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Prologue: HowDid All These Things Start?

During the past few years, after I explained what my PhD is about, I often got this question:

“What’s your background?” So, I feel maybe it is a good idea to start this thesis with some

anecdotes.

My Story about Chemistry

In high school, I had a keen interest in chemistry. Each element has its unique properties, and

together, they can have various reactions and make up all kinds of substances. I found this

fascinating. After this initial excitement, I soon wanted to know the rules behind those

phenomena. One of the first rules I learned was about reduction-oxidation reactions in which

an oxidant receives electrons from a reducer. An everyday example is that when iron rusts, the

iron atoms (Fe) give electrons to oxygen molecules (O2). Consequently, iron atoms become

ferric ions (Fe3+), and oxygenmolecules become oxide ions (O2-). The most basic rule about this

type of reaction is that a strong oxidant and a strong reducer will react, yielding a weak oxidant

and a weak reducer. Therefore, the reaction has a specific direction, making the reversed

reaction (iron rusts become iron and oxygen) impossible to happen automatically.

This rule made sense to me but still sounded abstract. To gain more intuition, I came up

with the idea to represent such reactions with balls and landscapes (Figure 1). In this idea, the

strength of the oxidants is represented by the height of the ball, and the reaction is represented

as a collision of two balls. A ball from a higher position can fall down and knock another ball to

a lower position, but not the other way around. Similarly, although the oxidation product (Fe3+)

now has a weak ability to act as an oxidant and receive electrons from others, it cannot get

electrons from oxide ions (O2-).

Figure 1. Potential landscape illustration of a simple reduction-oxidation reaction (iron rusts).
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My chemistry teacher, Mr. Wang, quite liked this idea at that time. As my interest in

chemistry continued to grow, I followed him in an extracurricular training for the Chinese

Chemistry Olympiad (CChO) and learned more about chemical reactions and substances. In

organic chemistry, I saw my old friends, landscapes, again, which were used to represent the

detailed change process from reactants to products. During an organic reaction, the reactants

first need to overcome an energy barrier (Figure 2). The lower the barrier, the faster the

reaction is. Many organic reactions are reversible, meaning that the products may revert to the

reactants. In the long run, the extent of the reaction depends on the relative stability of the

reactants and the products. If the reactants have high energy (are less stable), the reaction

tends to be complete, meaning that most of the reactants will become products. Once again,

the idea of potential landscapes stood out to me as a powerful way to think about stability and

transitions.Many things in the world work like balls on a landscape. They have energy-like properties

that represent the stability of their states. Understanding this can be quite valuable in making sense of

how systems shift from one state to another. Although I didn’t realize it at the time, this idea would

later become important inmy journey in psychology.

Figure 2. Illustration for the reaction potential energy surface of the hydrolysis of methyl

chloride. Some catalysts can lower the barrier of the reaction, thus increasing the reaction

speed.

The result of the CChO, by the way, was that I won a national gold medal and was

admitted by my dream school, Peking University, for a bachelor’s program in chemistry. In the
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university, I gained more knowledge about how chemistry works in real life. Researchers in

social sciences may think exact sciences1 like chemistry have “cleaner” theories and

phenomena. Well, that might be true in textbooks but is not actually the case in research labs.

To produce a reaction is much more difficult than writing its formula down on paper. The

flasks and tubes need to be arranged smartly to allow adding reagents halfway and to prevent

leaking; the reaction temperature needs to be carefully controlled to make sure the reaction

does not stop but also not set up fire (I did once set up a small fire); the process needs to be

monitored in various ways to ensure the reaction completes properly, not too soon nor too

late… From there, I learned an important lesson about the gap between theory and reality.

Scientific theories often appear clear and concise because they describe idealized situations. In practice,

however, things are far more complex, with many factors playing a role. It is crucial to carefully assess

whether the conditions underlying a theory still hold in real life. This insight, as you will see, also

applies to other fields.

Figure 3. Illustration of chemistry in theory and real-life labs.

Perhaps unsurprisingly, chemistry students don’t just take chemistry courses, but also

mathematics, physics, and programming. Through those courses, I was introduced to the basic

concepts of dynamic systems and their formal analysis methods and gained coding skills. One

key difference between these fields and chemistry is their bottom-up approach. They often

start with simple, idealized models that may not be entirely realistic but can still capture the

essential aspects of complex phenomena. For example, a gas is composed of billions of

molecules. It is infeasible to precisely describe the interactions of each pair of molecules.

However, if we assume all themolecules only have elastic collisions, we can reach a very simple

1Or “beta subjects” as known by Dutch people.
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description that is accurate enough for everyday applications. When needed, we can introduce

adaptations to reach higer precision, but these adaptations are still based on the original

simple form. This taught me that while it is important to describe a complex system realistically,

sometimes starting with simpler building blocks and gradually refining the model from there is also

valuable. This idea would also come back later for me in my PhD.

My Story about Psychology

Let me now return back to my high school days and tell you the other side of the story, about

my interest in psychology. During high school, perhaps fueled by a mix of puberty and the

extra adventure (or pressure) of the Olympiad competition, I also became deeply curious about

the workings of themind, both my own and that of others. Our competition programwas quite

intense, as we spent a large amount of time alongside the normal curriculum, characterized by

uncertainty, planning, information searching, and frequent interaction and competition with

other teammates. At the same time, like many teenage boys, I began to feel things I didn’t quite

have words for. Many questions came to mymind at the time. I wanted to knowwho I was and

what I wanted to be, why I felt nervous sometimes or had strange feelings towards friends, and

why people around me had different beliefs, motivations, and ways of acting. Psychology

wasn’t a subject taught in Chinese high schools. Nevertheless, in search of answers to those

questions, I exploredmany introductory and folk psychology books duringmy free time.

After I started university, I enrolled in a double bachelor’s program in psychology,

thinking it would remain just a serious hobby. However, in my second year of chemistry, I

realized that while I loved learning chemistry, I lacked the curiosity to push its boundaries

through research. No topic truly sparked my desire to know beyond the textbooks. Two other

things also happened at the same time. First, I found several friends and classmates of mine

were struggling with mental issues. I tried to help them with the knowledge I had, but I often

felt a deep sense of powerlessness, not only because I didn’t know much about

psychopathology at the time, but also because even the experts they turned to couldn’t always

offer much help, either. Second, in a general education course, we were required to read a book

from a classic book list, and I chose The Art of Loving by Erich Fromm. This book was really

inspiring to me, so I also continued reading several other books about the history of

psychology, psychopathology, and psychotherapy. My interest in psychology grew so large

that I started to feel that maybe I wanted to be a psychologist more than a chemist.

My journey took a new turn when I first visited the research group of Prof. Yanjie Su. Her

work spans a wide range of topics in developmental psychology, and I immediately knew I
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wanted to do research like that. I immersed myself in more psychology courses and started an

undergraduate research project in Prof. Su’s lab, investigating a question that stemmed from

my own observations and curiosity. I loved the project and knew then that I wanted to pursue

research in psychology. I decided to go abroad for a master’s in psychology and received an

offer from Radboud University, Nijmegen. Although I completed bachelor’s degrees in both

chemistry and psychology, I initially thought that my chemistry knowledge wouldn’t be

helpful to me any further. After all, it is not seen as useful in 99% of psychology labs.

I say 99%, because I happened to come across the field of complexity sciences in the last

year of my bachelor's degree and found that there was a complex systems group in the

Netherlands, the place I was already planning to go. Everything started to come together when

I joined the Complexity in Behavioural Science (CiBS) group and met my master’s and PhD

supervisors, Prof. Anna Lichtwarck-Aschoff and Dr. Fred Hasselman. There, many ideas from

mathematics and natural sciences about how complex systems with many interacting

elements work were applied to understanding psychological phenomena. As I immersed

myself in this approach, I not only found it intuitive but also started generating quantitative

ideas naturally. I saw ways to move beyond abstract and metaphorical concepts and actually

calculate things that I felt were critical to the field. These ideas felt very concrete, thanks to the

strong foundation I had built during my earlier studies in psychology, statistics, mathematics,

physics, chemistry, and coding, essentially everything I needed. Moreover, many lessons I

learned frommy chemistry studies also echoed again, shaping some of the key ideas in my PhD

project.

In the next section, I will introduce you to some specific topics that I have been working

on.

Introduction to This Thesis

It is difficult to understand the human mind and why some people suffer from mental

disorders. A major reason is the inherent complexity of humans. This complexity lies on

different levels. On the biological level, millions of neurons in the brain coordinate in a way

that is still far from being understood, producing all kinds of fascinating phenomena. On the

level of groups and society, individuals interact with others, forming diverse relationships and

collective behaviors. Even on the individual level, which is the primary focus of psychology,

thousands of psychological constructs and processes unfold over time (Borsboom et al., 2022;

Elson et al., 2023; Hasselman, 2023b). All these layers of complexity contribute to the

challenges in understanding themind andmental disorders scientifically.
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Nonetheless, social scientists are not alone in this adventure. Scientists in other fields,

such as mathematics, physics, and biology, also face the challenge of understanding complex

phenomena and have made significant efforts to address them. Many researchers across fields

have recognized that properly handling complexity is the key to understanding many

important systems. Complexity science, therefore, emerged as an intrinsically

multidisciplinary field that offers many conceptual and analytical tools, to study complex

systems. Conceptual tools are the fundamental ideas and frameworks within complexity

science. Some examples include self-organization, emergence, critical transitions, and chaotic

dynamics (Borsboom et al., 2022; Bringmann et al., 2023; Cramer et al., 2016; Hasselman, 2023;

Hayes & Andrews, 2020; Olthof et al., 2023; Thelen & Smith, 1998; van der Maas, 2024; also see

Table 1). These ideas are typically explored in philosophical or narrative terms, providing

qualitative insights without requiring technical or mathematical formulation. Analytical tools,

in contrast, involve more rigorous approaches, such as mathematical derivations, computer

simulations, and statistical modeling. These tools aim to quantify, model, or test the

phenomena in complex systems, offering a formal bridge between abstract concepts and

concrete observations. Some examples that fall into this category include complexity measures,

stability analysis of equilibrium points, and non-equilibrium thermodynamics (Di Vita, 2022;

Lloyd, 2001; Sayama, 2015; also see Table 1).

Of course, there is no clear boundary between the two types of tools, as most conceptual

frameworks are grounded in earlier analytical work, and analytical tools are often guided by or

require conceptual ideas. Yet, for psychologists, especially those whowork with behavioral data

rather than neurophysiological data, it seems that the conceptual part of complexity science has

been more readily applied than formal analytical tools (Wagenmakers et al., 2012; but also see

Stephen & Van Orden, 2012). This comes from at least two reasons. First, the measurement

issue in psychology has long been an important challenge (Fried & Flake, 2018; Hasselman,

2023a; Lakens, 2025). Psychological constructs, especially those related to mental disorders

and well-being, are often assessed by self-report instruments. In a typical example, a

participant is asked to report their happiness on a 1-7 Likert scale. This measurement

procedure can, at most, distinguish seven levels across the full spectrum of happiness, and for

many participants, the difference between choosing a 2 or a 3 may be negligible. This limited

resolution imposes a ceiling on measurement precision. If it is impossible to measure mental

states with sufficient precision, applying sophisticated analytical tools would be infeasible,

leaving their adoption lagging behind. Second, the research culture and training of social

scientists place greater emphasis on concepts, ideas, or heuristics than formal analytical



Chapter 1

14

methods (Borsboom, 2006). As a result, neither the researcher nor their target phenomena are

fully prepared to embrace the formal side of complexity science.

Table 1. Some key terms in complexity sciences and their definitions (Scott, 2005).

Classification Terms Definition

Conceptual tools

Self-organization Spontaneous formation of spatiotemporal or functional

structures in complex open systems.

(Modest)

Emergence

The whole has features that are different in kind from

those of its parts (or alternatively that could be had by

its parts.

Critical transition A change from one system phase to another.

Chaos Systems that evolve in time according to a

deterministic rule and demonstrate capricious and

seemingly unpredictable behavior.

Analytical tools

(Algorithmic)

Complexity

The length of the shortest algorithm, or the most

parsimonious recipe that can generate the studied

entity.

Stability of

equilibrium in

dynamic systems

An equilibrium point is stable if all local trajectories

flow into it and is unstable if at least one local

trajectorymoves out of the neighborhood. Can be

determined by calculating the Lyapunov exponent.

Non-equilibrium

statistical

mechanics

A branch of statistical mechanics that aims to describe

the behavior of large systems of particles that are

moved away from the thermodynamic equilibrium,

using the properties of each individual element and

their interactions specified by physical laws. Such

systems produce irreversible behaviors and form

thermodynamic equilibrium states in isolated

situations butmay form a stationary nonequilibrium

state under constraints.

The strong conceptual focus, sometimes at the expense of technical precision, can cause

problems, as critical details may be lost during explanation and interpretation. A notable

example is the hype and subsequent misuse of catastrophe theory. Catastrophe theory showed
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an interesting mathematical phenomenon that the stable equilibria of dynamic systems may

suddenly appear or disappear in response to continuous changes in control parameters (Thom,

1975; Zeeman, 1976). However, later studies often overlook the mathematical underpinnings

and use the theory to explain various discontinuous phenomena, many of which stem from

very different causes, such as the possible states of the system are inherently discrete, or that

the sudden change in the state of the system comes from the sudden change of the control

parameter (Sussmann & Zahler, 1978; Zahler & Sussmann, 1977; see Figure 4). Such

misunderstandings do not only assign incorrect explanations to observations but also

encourage misguided applications, reducing the effectiveness of the tools and the insights they

could offer.

Figure 4. Illustration of the catastrophe theory and twomisused cases.

Things are changing, though. In recent years, various methods have been proposed to

bring formal analytical techniques into the field of psychology. Several notable examples

include network psychometrics models (Borsboom et al., 2021), formal dynamic models

(Haslbeck et al., 2022), drift-diffusion models (Loossens et al., 2020; Oravecz et al., 2009),

early warning signal research (Helmich et al., 2024), and recurrence-based analysis tools

(Hasselman & Bosman, 2020). These methods provide important tools with different

emphases. Network psychometric models and formal dynamic models focus on the structure
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and form of dynamic interactions among multiple variables, with the former being data-driven

and the latter theory-driven. Their central goal is to investigate the complex dynamics of

important elements in a system and figure out how one element influences another. Drift-

diffusion models, early warning signal research, and recurrence-based analysis, on the other

hand, focus more on the general stability of a system’s macro states. They aim to identify the

stable states of the system, describe how much the system fluctuates around those stable

states, and predict when is such change likely to happen.

However, this progress is still not enough. There are still many concepts remaining vague,

many conditions remaining implicit, and many mechanisms remaining unexplained. This is, of

course, a broad issue that could be discussed endlessly. To make the discussion more concrete,

I focus on three concrete questions in the subsequent sections, which form the core guiding my

PhD work. First, what is the meaning of stability of states in a complex psychological system,

and how, if possible, should we calculate it? Second, what are the possible mechanisms

underlying change in psychological phenomena, and how, if possible, should we predict when

change will occur? Third, how do nonlinear interactions give rise to complex behaviors in

psychological systems, and how, if possible, should wemodel and analyze them?

Potential Landscape: Representing Stability in Psychological Systems

Although the concept of potential landscape originates from physics, the idea of using

landscapes to represent stability is already built into our intuition. The famous visual cliff

experiment by Gibson and Walk (1960) shows that infants as young as 6 months old already

show scare in front of a cliff – they know that if they move forward, their current position will

no longer be stable and they will have the tendency to fall down. Therefore, it is not surprising

that many fields of science use potential landscapes to represent stability and the tendency to

change. In the 1910s, René Marceli, a physical chemist, already proposed the use of potential

energy surface (PES) to represent the energy of the molecules as a function of the atom

coordinates (Lewars, 2003). In biology, Wright (1932) used the fitness landscape to describe

the relationship between genotypes and reproductive success, and Waddington (1966) used

the epigenetic landscape to represent the process of cell development and differentiation. In

ecology, similar analogies were introduced by Williams in 1970 to describe possible ecological

states, their relative stability and resilience, and regime shifts (Lamothe et al., 2019).

Psychology has also adopted the landscape metaphor to represent the stability of

different psychological states. Haken et al. (1985), for example, used potential landscapes to

represent the bistability in finger movement patterns, and van der Maas et al. (2003) used

landscapes to represent polarization in attitudes. Many researchers in psychopathology also
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started to use the landscape metaphor recently (Hayes & Andrews, 2020; Olthof et al., 2023;

van de Leemput et al., 2014; Wichers et al., 2019). In those applications, there are often two

basins in the landscape, one representing a healthy phase, and the other representing an

unhealthy phase (e.g., depression). The relative depths of the basins and the barrier between

them are then used to represent the stability of the two phases and the difficulty for the system

to transition from one phase to the other. Although the landscape metaphor conveys ideas of

multistability and transitions, it cannot be directly linked to empirical observations or

quantitative models. As a result, the relative stability of different psychological phases, as well

as changes in the stability landscape, remain speculative, with no way to evaluate whether

these guesses are accurate. Therefore, to go a step further, we need a way to quantitatively

calculate the potential landscapes.

The calculations of potential landscape and dynamics can go in two main directions:

calculating the potential energy directly, or calculating the potential landscape from dynamic

equations. In some fields, the calculation of potential energy is straightforward. The PES in

chemical reactions is one example of such. There, using some quantum mechanics methods, it

is possible to calculate the energy of the reactants, the products, and the transition state (i.e.,

the saddle point of the potential energy surface, which is the state with the highest energy

along the reaction process). The speed of the chemical reaction is then exponentially related to

the energy difference between the transition state and the reactants. In this example, the

potential energy is known and we use it to infer the dynamic properties of the system. For

other systems, however, having a dynamic function is more straightforward. This is the case in

biochemical systems with multiple species (e.g., Li & Wang, 2013; Li & Ye, 2019; Wang et al.,

2008). For example, there are multiple genes in a cell with complex relationships, some genes

activating others while some inhibiting others. Overall, they create several gene expression

patterns, corresponding to different types of cells (e.g., stem cells, neurons, blood cells, and

muscle cells). The relationships among those cells can be expressed in certain biochemical

formulas so that we know how the expression level of genes changes over time. However, there

is no well-defined “energy” for each possible state of gene expression. It is the dynamic

interactions among the genes that make it as if the cell can fall into various basins on a

landscape, representing different cell types. For this kind of system, we know the dynamic

functions in the system and use those to calculate the potential landscape.

For psychological systems, both cases are possible, but mostly the dynamics come first,

corresponding to the latter approach discussed above. A way to derive the dynamic equations

of psychological systems is to use formal dynamic models. Those models translate verbal
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psychological theories into mathematical equations. Once we have such amathematical model,

we can then adapt the methods from biochemical systems to calculate the potential landscape

of psychological systems. I show a concrete example in Chapter 2 using a formal model of

panic disorder, and I discuss the technical details of this method in Chapter 3. The dynamics of

the system can also be estimated from empirical data. In Chapter 4, I describe a method to

estimate the nonlinear dynamics from intensive longitudinal data and calculate the potential

landscape from there.

In some cases, however, the potential energy of a psychological system is available,

making the direct approach possible. In Chapter 5, I describe a method to estimate the

potential landscape for Ising network models. The Ising network is a kind of network model

that allows bistability (van Borkulo et al., 2014). This model has an intrinsic potential energy

measure. Therefore, instead of relying on the dynamics of the system, we try to summarize this

intrinsic energy measure to providemore intuitive metrics.

Transitions and EarlyWarning Signals: Theory and Reality

The past few years have seen ups and downs in the research of early warning signals (EWSs).

While complex systems research in psychology is often rather abstract, the idea of EWSs

appears to bear very practical promise. This promise builds on their ability to predict sudden

changes in many types of systems without requiring detailed knowledge of the underlying

mechanisms. Indeed, EWSs have been observed in a wide range of complex systems, including

various examples in natural sciences (Scheffer et al., 2009). Therefore, many researchers also

hope to use EWSs to predict sudden changes in psychopathology. Those sudden changes often

have critical implications. For example, if we know a patient is about to have a sudden

deterioration, we can apply timely intervention to prevent it.

The theoretical basis for classical EWSs2 is often explained through ball-and-landscape

illustrations, shown in Figure 5. The ball is in a deep basin at the beginning, but it gradually

loses stability, represented by the basin becoming shallower. During this process, the ball

becomes more prone to noise and starts to have larger fluctuations. If we record the system’s

state, we can observe its variance increasing. Moreover, it also takes longer for the ball to

return to the local equilibrium, leading to higher autocorrelation. In the end, the basin

becomes completely unstable, and the ball shifts to another basin, which represents a sudden

transition in psychological states. Therefore, this transition can be forecasted by the increasing

2 Some other statistical indicators may exist before transitions in very different kinds of systems than the original EWSs,
yet sometimes are also called early warning signals (e.g., Evers et al., 2024). I see this more as a terminology issue instead of a
substantial discrepancy in theories andmostly focus on the classical EWSs in this dissertation.
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variance and autocorrelations in the record of the system beforehand. These statistical

indicators, along with several others, are referred to as EWSs because they can help predict

critical transitions (Dablander et al., 2023; Scheffer et al., 2009, 2012).

Figure 5. Illustration of a bifurcation-induced transition.

EWSs are universal to some extent because they do not require a specific substantial

nature of the system — it can be physical, biological, financial, or psychological, and they do

not require a specific type of interaction among system elements. However, they require that

the system undergoes a specific type of transition similar to what is represented in Figure 5 and

that researchers calculate EWSs correctly. If these conditions are not met, the observed

statistical indicators may not reflect the reduced stability of the system and fail to predict a

transition. For example, if a system shifts to an alternative basin because of a random

fluctuation rather than a change in stability, no EWSs will appear; if the calculation of EWSs

includes not only the period before the transition but also during or after the transition, the

resulting statistical indicator may be confounded. Therefore, careful examination of the

research methods for EWSs, as well as a better understanding of possible transition types in

dynamic systems and their relationships to clinical phenomena, is required.

In Chapter 6, I will elaborate on the conditions under which EWSs are valid and discuss

how research methods of EWS studies can be better aligned with the underlying theoretical

assumptions. After that, in Chapter 7, I will introduce possible types of transitions in complex

dynamic systems and explore how these transition types can be conceptualized within the

context of psychopathology.

Complex Dynamic Interactions: Building from Basics

It is important not to miss the forest for the trees, but it is also unwise to ignore the trees once

we have seen the forest. In previous sections, I introduced some tools to describe the broader

picture of complex psychological systems, mapping their global stability, attractors, and

transitions. However, after mapping out these overarching dynamics, it is now the time to dive

deeper into the finer details, namely how the elements in a complex system interact with each
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other. The specific forms of these interactions play an important role in shaping the global

features of the system. For example, panic disorder is characterized by repeated panic attacks,

during which patients feel an extreme level of fear. Those panic attacks may come from the

vicious circle between physical arousal and perceived threat: if a patient’s level of physical

arousal (e.g., heart rate and breathing rate) increases, the person may take it as an indicator of

danger, which further increases the physical arousal level (Clark, 1986). Yet, this can only lead

to panic attacks when the relationship between physical arousal and perceived threat is

nonlinear; otherwise, the system will either always stay in the healthy phase or always be in a

panic phase, which is unrealistic (Robinaugh et al., 2021).

Most of the traditional statistical methods focus on linear interactions, which are easier to

estimate, suffer less from overfitting issues, and require fewer data points. However, they are

often not designed for estimating nonlinear dynamic interactions. Methods specialized in

recovering nonlinear relationships from data exist in other fields (e.g., Brunton et al., 2016),

but they are often data-hungry, requiring time series of lengths that are not feasible for self-

report data collection. In Chapter 8, I describe a newmethod that extends the traditional linear

vector autoregressive model by incorporating nonlinear terms. We show both its advantages

and limitations, and we recommend it mainly be applied for exploratory purposes.

Nevertheless, such an approach provides valuable insight into how far we can go in estimating

nonlinear dynamic relationships among psychological variables using the concurrent data

collection approach.

The data-driven approach is not the only possibility to investigate nonlinear interactions.

Nonlinear dynamic models can also start from theory, using mathematical modeling and

simulations to examine the relationship between the form of nonlinear interactions and the

global behavior of the system. The development of formal dynamic models is a relatively new

direction in psychology. Previous researchers mainly focused on simulations, searching for

specific dynamic features from simulated time series. Although this approach is intuitive, it

relies on specific simulation instances and parameter settings. It is unclear whether the

observed dynamic features only emerge under these particular conditions, and whether

changing the models will change the system’s overall behavior as well. In Chapter 9, I

introduce some graphical techniques from dynamic systems analysis and biological modeling.

These techniques can help researchers better understand how the form of dynamic equations

determines the system’s global behavior.

Okay, that’s it for now! I hope you enjoy the empirical chapters, and this narrative voice of

mine will meet you again in Chapter 10, the general discussion : )
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Abstract

For psychological formal models, the stability of different phases is an important property for

understanding individual differences and change processes. Many researchers use landscapes

as a metaphor to illustrate the concept of stability, but so far there is nomethod to quantify the

stability of a system’s phases. We here propose a method to construct the potential landscape

for multivariate psychological models. This method is based on the generalized potential

function defined by Wang et al. (2008) and Monte Carlo simulation. Based on potential

landscapes we define three different types of stability for psychological phases: absolute

stability, relative stability, and geometric stability. The panic disorder model by Robinaugh et

al. (2024) is used as an example, to demonstrate how the method can be used to quantify the

stability of states and phases, illustrate the influence of model parameters, and guide model

modifications. An R package, simlandr, was developed to provide an implementation of the

method.
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Introduction

The past decades have seen a rapid growth of models and theories in the field of psychology,

and more specifically in the field of psychopathology. These models, however, are not without

critiques. Many verbal theories acknowledge the complex and dynamic nature of mental

disorders, but they are not always able to make precise and falsifiable predictions (Borsboom

et al., 2021; Robinaugh et al., 2021). Statistical models can provide quantitative estimations,

but traditional and even cutting-edge statistical methods are largely based on linear, static,

and homogeneous assumptions, and usually fail to draw correct conclusions about the nature

of the underlying process (Granic & Hollenstein, 2003; Haslbeck et al., 2019; Olthof, Hasselman,

& Lichtwarck-Aschoff, 2020). In recent years, formal models are gaining momentum in the

field of psychology, aimed to address the abovementioned problems and provide a

quantitative foundation for theoretical inferences (e.g., Burger et al., 2020; Cramer et al., 2016;

Robinaugh et al., 2019; Schiepek et al., 2014).1

In those formal models, the elements of psychological systems and their interactions are

described mathematically. Based on these specifications, one can simulate how the model

evolves over time, observe the characteristics of the model, and investigate how the model

output corresponds to real-life phenomena. In complex systems, higher-order, macroscopic

psychological phases2 – distinct patterns of psychological systems – can emerge from the self-

organization of these microscopic elements and their interactions (Goldstein, 1999; Olthof et

al., 2023). Different psychological phases can sometimes be assigned to differences in mental

health: a system can for instance be in an anxious, panicky phase or in a calm and relaxed

phase (Robinaugh et al., 2024).

For formal models, the stability of different states and phases is an important quantity

that relates to individual differences and change processes of the system. Previous research has

often used the landscape metaphor to illustrate this idea: the state of the system is like a ball

on the landscape. If the ball is in “a deep valley”, the system is stable; if the ball is on “a hill” or

in “a shallow valley”, the system is unstable, and it tends to “fall down” to a more stable place.

The “valleys” or “attractors” correspond to possible phases of the system (Lamothe et al., 2019;

Olthof, Hasselman, Oude Maatman, et al., 2020; Wichers et al., 2019; see Figure 1 for a

diagram). If the valley of an unhealthy phase of some individuals is deeper, their mental

1 In this paper, we use the term “system” for real-life or modelled systems that contains interactive elements; “theory” for
a set of ideas that explain how the system work, and “model” for the tool that researchers use to give a simplified description
of the systemmechanism.

2 The term “phase” is sometimes used interchangeably with “state”, as in the “mania state/phase” of bipolar disorder and
“liquid state/phase” of matter. To avoid confusion, we use the term “state” in this paper for the more specific conditions of the
system which are defined by the values of the system variables, and “phase” for the higher-level patterns of the system that
consist of a group of states.
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systems are more likely to be trapped there, and they will be more vulnerable to mental

disorders. Also, the process of treating mental disorders can be seen as changing the landscape

of the system in a way that the stability of the unhealthy phase is decreased while at the same

time strengthening the stability of healthy phases (Hayes et al., 2015).

Figure 1. Diagram of concepts in the landscape metaphor of psychopathology.

While the metaphorical use of the landscape is certainly a good way of illustration, the

concept of stability does not yet have a formal, quantitative representation, which hinders

further investigation. This calls for a new line of methods: quantitatively computing the

potential landscape from formal dynamicmodels.

FormalModels and Case Simulations

As its name suggests, a psychological formal model of psychological phenomena

mathematically defines how variables evolve over time and how they interact with each other.

Often the evolution of such systems can be described by a set of (stochastic) differential

equations. These equations specify the forms and strengths of these interactions among

variables and the magnitude of noise in mathematical form. With this precise description, one

can determine how the system evolves over time from a starting point and gain knowledge

about the theory-implied behavior of the system (Robinaugh et al., 2021).

A well-known psychological formal model is the panic disorder model by Robinaugh et al.

(2019; also see Borsboom et al., 2021, and Haslbeck et al., 2019, for discussions on this model).

This model is well constructed and contains many typical features that are common in

psychological models (e.g., nonlinear relationships, feedback loops, the dependence of system

behavior on its unique history, adaption to the environment, and a rather large number of

variables). Therefore, we use this model as an example to explain our ideas. Here we briefly

introduce the model specification and the main variables and parameters. The relationships of
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the most important variables that we use in the current paper are shown in Figure 2, and the

full description of the model can be found in Robinaugh et al. (2024). The variables and

parameters that will be investigated in the current paper are marked in bold font on their first

occurrence.

Figure 2. Simplified causal diagram of the panic disorder model (adapted from Robinaugh et al.,

2019). Each circle represents a variable of the model. The solid lines represent positive

influences on the changing rate of the target variable, and the dashed lines represent negative

influences on the changing rate of the target variable. The circle on the path from arousal to

perceived threat represents the moderating effect of arousal schema on this relationship.

In this model, a panic disorder is considered to emerge from mutually interacting system

variables. The core variables of this system are physical arousal (A, the level of arousal-related

sensations, e.g., heart rate) and perceived threat (PT, the cognitive perception that the

situation is threatening). The changing rate of physical arousal (A), d�/d�, is influenced by its

own value, perceived threat (PT), and homeostatic feedback (H, the strength of the

homeostatic processes that counteract the unsustainably elevated physical arousal),

d�
d�

= �� ���,��� − � − ��,�� , 1

which represents that physical arousal (A) tends to decrease when itself and homeostatic

feedback (H) is high and tends to increase when perceived threat (PT) is high. The parameters

��, ���,�, and ��,� represent the strength of these influences. The changing rate of homeostatic

feedback (H), d�/d�, is influenced by its own value and physical arousal (A),
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d�
d�

= ��
���,�

���,� + ℎ�,�
��,� − � , 2

which represents that homeostatic feedback (H) tends to decrease when itself is high and

tends to increase when physical arousal (A) is high. The parameters �� , ��,� , and ℎ�,�

represent the strength of these influences. The changing rate of perceived threat (PT), d��/d�,

is influenced by its own value, physical arousal (A), and escape behavior (E),

d��
d�

= ���
���,��

���,�� + ℎ�,��
��,�� − �� − ��,��� , 3

which represents that perceived threat (PT) tends to decrease when itself and escape behavior

(E) is high and tends to increase when physical arousal (A) is high. ��� , ��,�� , ℎ�,�� , ��,�� are

parameters representing the strength of these influences. Here, the influence of A on the

changing rate of PT is not linear, but in the form of an S-shaped sigmoid function. Robinaugh

et al. (2021) showed that this sigmoid function is necessary for the formal model in order to

generate theory-implied behavior as observed in real life. The changing rate of escape behavior

(E), d�/d�, is influenced by its own value and perceived threat,

d�
d�

= ��
�����,�

�����,� + ℎ��,�
���,� − � , 4

which represents that escape behavior (E) tends to decrease when it is high itself and tends to

increase when perceived threat (PT) is high.

People with a panic disorder over-interpret their physical arousal as an indication of

danger. When this over-interpretation, termed as arousal schema (AS) in the model, is high, an

increase in physical arousal can result in a larger increase in perceived threat. This effect of AS

is represented as its influence on the parameter ℎ�,��,

ℎ�,�� = 1 −
��

�� + ℎ��,���
− ����, ����. 5

When AS is higher, ℎ�,�� is lower, which makes the influence of A more dominant in

Equation 3. Therefore, it is easier for a relatively high level of physical arousal (A) to lead to a

large increase in perceived threat (PT). The increase of perceived threat (PT) can, in turn,

amplify physical arousal (A). This generates a vicious circle between the two and finally lead to

a panic attack. A collective variable fear is defined as the geometric mean of A and PT,

���� = � × ��, 6

and is used to represent the general symptom severity. Panic attacks, therefore, manifest as a

sudden increase in the level of fear. If panic attacks happen relatively often, the person can be

said to have a panic disorder. Arousal schema (AS) is also influenced by a learning mechanism.
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Its changing rate, d��/d� , depends on its own value and the previous history of perceived

threat (PT), fear, and escape behavior (E),

d��
d�

=
0, if max �����−Ω, …, ����� < ������,��

���,� max ���−Ω, …, ��� − �� , if max �����−Ω, …, ����� ≥ ������,�� and max ��−Ω, …, �� > ���,��

− ���,���, if max �����−Ω, …, ����� ≥ ������,�� and max ��−Ω, …, �� ≤ ���,��

, 7

which represents three different learning conditions. When the maximum value of fear in the

previous Ω time points is lower than a critical threshold ������,�� , no learning processes

happened; when the maximum value of fear in the previous Ω time points is higher than the

critical threshold ������,�� , the direction of the learning process depends on whether the

individual’s escape behavior (E) in the previous Ω time points is higher than another threshold

���,�� . If the previous escape behavior (E) is high, the individual does not know how

threatening the actual situation is, so he or she will learn to update the arousal schema (AS)

according to the highest perceived threat (PT) during this time period with an acquiring rate

parameter ���,� ; if the previous escape behavior (E) is low, the individual will find that the

actual situation is not so threatening, so his or her arousal schema (AS) will decrease with an

extinguishing rate parameter ���,�.

The model is intended to produce two qualitatively different phases of the (patient)

system: a healthy phase and a panic phase. The simulation results of this model (with the

parameter values in Robinaugh et al., 2019; Figure 3) indeed show clear sudden increases in

fear, which represent panic attacks. In these panic attacks, the system moves from the healthy

phase to the panic phase, and quickly transitions back to the healthy phase. When the arousal

schema (AS) becomes higher, the panic attacks become more frequent, which qualitatively

shows the stability of the panic phase increasing, and the stability of the healthy phase

diminishing. These simulation results align well with the theoretical foundation of the model.

In this approach, the performance of the model is evaluated by case simulation result: the

output of directly simulating the dynamic model. Case simulation is an important way of

model evaluation and deduction because it shows how the system evolves if the model

correctly represents the system. A mismatch of the simulation result and real-life observations

indicates something must be wrong in the model. Case simulation, however, cannot directly

provide information about the stability of states: what it shows is how the state changes over

time (i.e., state as a function of time), not the stability of different states (i.e., stability as a

function of states). Therefore, we need to find a way to define and calculate the stability of the

states in a psychological system.
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Figure 3. The simulation results using the panic disorder model by Robinaugh et al. (2024).

The first panic attack of the system appears probabilistically. To make simulation results

comparable, time was set as zero at the first panic attack (the time when the peak value of fear

is reached).

Potential Landscape for a Dynamical System

Defining or representing stability is not a totally new subject. In physics, the quantity that is

used to represent the stability of a state is the potential function. Take the gravitational

potential energy as an example: for a given object, if it is at a higher position, its gravitational

potential energy is higher. This means that the object is more unstable, and it is more likely to

“fall down” to more stable states in lower places. Mathematically, if a potential function can be

(strictly) defined for a system, its velocity (i.e., how the system state changes over time) should

be proportional to the gradient of the potential function. Intuitively, this means that the

system always tends to move to the place with lower potential energy, just like a ball on a hill

tends to fall along the most convenient way into the valley.

For a unidimensional deterministic system, the potential function can be easily obtained

from taking the integral of the dynamic function. This method has already been used for

representing the stability of states in unidimensional psychological systems (e.g., Dablander et

al., 2020; Robinaugh et al., 2019). However, most psychological models contain many variables,

thus are multidimensional. Analyzing the stability for multidimensional systems is more

challenging because the multivariate dynamic functions are often not integrable. One way to

understand this issue is by looking at the Penrose impossible stairs (Rodríguez-Sánchez et al.,

2020; see Figure 4): it is possible that a system keeps whirling around, but then it cannot be

represented as always going downstairs in a real 3D space. Therefore, the potential landscape

cannot be directly obtained. Mathematicians have developed several generalized methods to

construct generalized potential functions (P. Zhou & Li, 2016). These methods relax the

requirements of integrability, but the resulting functions can also be used to represent the
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stability of system states. Among different ways of generalization, we found the potential

function by Wang et al. (2008; also see Li & Wang, 2013, and Li & Ye, 2019, for examples of

usage in complex biochemical systems) the most suitable for psychological formal models

because it can be estimated with the Monte Carlo method, thus does not have a strict

requirement concerning the properties of the dynamic functions. Other generalizations often

require the dynamic functions to be continuous, derivable, and independent of the history,

properties that psychological models often do not meet (e.g., Equation 7 of the panic disorder

model is dependent on the model history and thus not derivable). Wang’s definition of

potential function is based on the steady-state distribution of the system (denoted as PSS),

which refers to the distribution of states that holds constant over time. If we have a single

system evolving over time according to a set of (stochastic) differential equations, its state is

likely to change every now and then. However, if we have an infinite bunch of systems with the

steady-state distribution and let them all evolve together, although each system’s state still

changes, their distribution can be invariant.3 Following a generalization of Boltzmann

distribution, the potential (U) of a state X is then given by

�(�) =− ln �SS(� (8)
which means that the potential is equal to the logarithm of the steady-state distribution. If the

probability density for the steady-state distribution is lower, then its potential is higher.

Figure 4. The Penrose impossible stairs (Sakurambo, 2005).

3 A concrete illustration: imagine an infinite number of copies of an athlete running on a 400-meter track, and imagine
they are independent (so they do not run into each other). Even if they are copies of the same athletes, due to random noises,
they will gradually distance themselves from each other. After an infinitely long time, these people will be very evenly
distributed in the track. Now even if each person is still running, the population distribution on the track will not change
anymore. If each running person is a stochastic dynamic system, then this population distribution is the steady-state
distribution for the system.
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This potential function is also related to some other properties expected from strictly

defined potential functions. Here we also explain the usefulness of generalized potential

functions from the force decomposition perspective (P. Zhou & Li, 2016). As mentioned above,

the main issue in constructing potential landscapes for multidimensional systems is that they

often show whirling behaviors that cannot be represented with a potential landscape. These

whirling behaviors are not the whole picture because the total forces in the system also contain

gradient parts that represent the general tendency for the system to move to some specific

regions. The idea of force decomposition means to decompose those complex forces of a

system into a curl part and a gradient part. The stability information of the system is mainly

contained in the gradient part, and the gradient part is integrable. Therefore, the generalized

potential landscape can be obtained by integrating the gradient part of the forces. The curl part

does not contain direct information about the stability because if the system just has the

tendency to oscillate between two states without a preference, it is not meaningful to say that

one state is more stable than the other. Wang’s landscape is originally defined from the steady-

state distribution, but it can also be proved that it is equivalent to a possible way of force

decomposition (P. Zhou & Li, 2016). Therefore, the potential landscape constructed with

Wang’s method can be seen as a representation of the gradient part of the system dynamics.

From either perspective, the potential landscape of the system shows the tendency that

the system resides or leaves a specific state. If a state has a lower density in the steady-state

distribution, the system is less likely to be around this state in the long run; and if there are a

bunch of systems starting with a uniform distribution in the state space, it is more likely that

the systems starting around this state will move to other states. If a system is in a higher

position on the gradient part of its dynamics, it means that the system tends to fall down to a

lower position if not affected by the curl forces and random noises. Therefore, the potential

landscape can efficiently represent the stability of psychological systems on the state level.

Having the potential for specific states, we can now describe the stability of the phases.

How to clearly define psychological phases is a complex issue on its own. One may propose

that a collection of qualitatively similar states constitutes a phase (e.g., the mental states when

a patient with depression has a high overall symptom severity), in which case the phase may

be seen as a point attractor. In contrast, it can also be the case that certain kind of trajectories

constitutes a phase (e.g., a mental trajectory in which a patient with cyclothymic disorder

switches between states with high depressive symptoms and states with elevated moods), in

which case the phase may be seen as an oscillating attractor (Barton, 1994). Sometimes those

two definitions can also be interchangeable. For example, if we use the mood variability over a
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period instead of the valence and intensity of mood as the key variable to describe the

cyclothymic disorder, then the patient’s mood variability is always high, and may be described

as a point attractor. Fully investigating this issue is beyond the scope of the current paper. For

clarity and simplicity, we will only look into the phases consisting of similar states and

bounded by barriers in the potential landscape (i.e., point attractor-like phases). In other

words, we use the term state for a point in the state space (e.g., the state with � = 0.1 and

�� = 0.1) and the term phase for a larger region that contains many states within it (e.g., the

healthy phase). This distinction, although not commonly made in psychological literature, is

important for the method we are introducing. The relationships among the potential function,

parameters, variables, state, and phase we used in the current paper are shown in Figure 5.

Figure 5. The relationships among the potential function, parameters, variables, state, and

phase in the framework of our method.

Based on the potential function of states (defined in Equation 8), we can go one step

further to define the stability of phases, which is often more important for psychological

systems. From the potential landscape perspective, the stability of phases can be characterized

in three ways (see Figure 6). The first one is the local minimum of the potential function within

a given phase. Although the phase contains a collection of many states, the local minimum is

the most stable state in the phase, hence can provide a quantitative representation. We refer to

the potential of the local minimum as the absolute stability of the phase. Second, the potential

difference between the local minimum and the barrier of the phase is directly related to the
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difficulty for the system to move out of that phase. We refer to it as the relative stability4 of the

phase. The difference between the two is that the former represents if given infinite time, how

probable it is for the system to be in a given phase (e.g., the healthy phase in the panic disorder

model); the latter represents, if putting the system in a given phase, how difficult it is for the

system to escape that phase. Finally, the shape of the potential landscape within and around a

certain phase represents how probable the system vibrates within or leaves a phase in a certain

direction. We refer to this as the geometric stability. Although the geometric stability, as the

shape of the landscape, is described qualitatively in the current work, we should note that this

qualitative information is based on the quantitative information of the stability of the states

within and around a phase of the system.

Figure 6. The relationships among the absolute stability, relative stability, and geometric

stability of a psychological phase.

Besides quantifying the stability, potential landscapes can also be used for other purposes.

One advantage of the potential landscape over the case simulation is that it can summarize the

stability information concisely and be directly compared across different parameter settings,

therefore enables systematic investigation of the influence of various parameters on the model.

For example, Robinaugh et al. (2024) only provided one set of values for all 22 parameters in

the model, and these parameter values were chosen based on their ability to produce

reasonable output. The plausible range of each parameter, however, was not investigated. This

4 This is related to the term “resilience” used in some papers (e.g., Dablander et al., 2020).



Constructing the Potential Landscape for Multivariate Psychological Models

33

2

is a common practice for performing case simulations for formal models but leaves the

robustness of a specific parameter setting questionable. Those parameters also are related to

trait-like psychological properties of the system, which are of theoretical interest. It is

understandable that most modelers do not show the simulation results with all different

parameter settings because it does not show the influence of parameters in an informative way.

With the help of potential landscapes, these problems can be addressedmore clearly.

The potential landscape can also provide guidance on model modification. It is nearly

impossible to have a model that successfully explains every real-life phenomenon.

Modification is often needed to continuously improve the model. Case simulations do not

always provide enough guidance on how to modify the model. For example, there is a clinical

phenomenon that the panic attack model could not explain: some people only have some

(non-clinical) panic attacks but do not develop a panic disorder (Robinaugh et al., 2024). In the

original model, however, if the panic attack happens once, the system would always develop

into a panic disorder. The authors provided a way of mending as an example of model

improvement, namely adding another parameter called “escape schema” (SE). When SE is

higher, the parameter ℎ��,� in Equation 4 is higher. This parameter represents the extent to

which the individual believes escaping could help to cope with the perceived threat. After

adding this parameter, individuals with a low SE would have panic attacks but would not

develop a panic disorder. The rationale behind this solution is mainly based on a known

theoretical mechanism that is translated into a model parameter, but not based on the model

output. In other words, the simulation results only provide information about whether there is

a problem, but not how the problem arises. The potential landscape method in contrast can

provide insight into the problem – at least problems can be systematically analyzed from the

perspective of stability.

Aim of the Current Research

The current research aims to provide a method to compute the potential landscape for

psychological formal models and examine its usefulness in understanding psychological

systems. First, we develop a set of tools to compute the potential landscape and related

stability indicators from psychological dynamic models. Then, we illustrate how the procedure

works by using the panic disorder model by Robinaugh et al. (2024). We will show how to (1)

analyze the stability of states and phases from the potential landscape perspective, (2)

systematically investigate the influence of various parameters from the potential landscape,

and (3) use the potential landscape to guidemodel modification.
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Methods

The method section is divided into three parts. In the first part, we show the adjustments we

made to make the panic disorder model more suitable for landscape construction. In the

second part, we explain the preparatory analyses we did that ensure the validity of the

landscape results. In the third part, we introduce the method that we used in the main analysis.

The simulations and analyses in this study were performed in R 4.1.2 (R Core Team, 2021). The

replicable R scripts used for this study, as well as the animation or interactive version of the

landscapes, can be found at the OSF repository of this project (https://osf.io/ke3xb/). An R

package, simlandr5, was developed to organize the methods we used and to facilitate future

applications. We try to involve minimal yet sufficient mathematics in the current article. For

readers seeking more rigorous technical details of this method, we refer them to A3. Practical

information on programming issues in Appendix A and Cui et al. (2021).

Model Adjustments

In order to construct the landscape for the system, some modifications are needed. First, we

adjusted some ways of computational implementations to make the simulation more effective.

The new implementation produces, in principle6, the same outputs as the implementation by

Robinaugh et al. (2024).We refer to this model as the original model.

Then, as we use long-term simulations to estimate the steady-state distribution of the

model, we need the model to have global ergodicity. In other words, the model should travel

through its entire realistic phase space in a sufficiently long time. Complex systems often

display local ergodicity breaking, which occurs when the system gets trapped in a local

minimum, or, attractor state. To ensure global ergodicity, we want the model to have large

enough noise terms so that the system can escape local minima. The original model does not

meet this requirement because there is only one noise term on the changing rate of physical

arousal (A). This term is not enough to ensure the ergodicity of the whole system. Therefore,

we added several Gaussian noise terms on all model variables to replace the single noise term

in the original model. We also calibrated the standard deviation of the noise term to make sure

the panic phase still exists. Second, in the original model, there is a short-long term difference:

some variables (e.g., arousal schema, AS) are updated every “day”, while other variables are

updated per “minute”. However, in a Monte Carlo simulation, the purpose is to estimate the

steady-state distribution, not to represent the actual time scale of real-life changes. Keeping

5 The package and its vignettes are available at https://cran.r-project.org/package=simlandr.
6 The simulation function is implemented using Rcpp (Eddelbuettel & François, 2011) instead of the implementation in R

by Robinaugh et al. (2024), and random numbers are generated using RcppZiggurat (Eddelbuettel, 2020) in this
implementation. Some differences in pseudo-random number generation may lead to very minor differences in the model
output. These differences, however, do not influence the results meaningfully.
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the short-long term difference in the model for Monte Carlo simulation is not meaningful and

will reduce the effective sample size for those slowly updated variables. Therefore, we deleted

the short-long term difference by updating all the variables in the same frequency. We refer to

this model as the simplified model.

In the original model, AS is an important variable that influences the stability of the

system, and it changes muchmore slowly compared to other variables. In the simplified model,

we added noise to it and made it change faster. These modifications make it difficult to see

how the value of AS changes the stability of the system. Therefore, we also made a model that

is based on the simplified model but holding AS constant. In this model, AS is a parameter

instead of a variable, and it is useful for investigating the influence of AS. We refer to it as the

constant ASmodel.

Finally, we also extracted the deterministic part of the constant AS model (i.e., all noise

terms were deleted). This is because a model of deterministic ordinary differential equations

(ODEs) enables mathematical analyses of the stable points of the model. We refer to this

model as the deterministic model.

Preparatory Analyses

The Number and Stability of Equilibrium Points. Using the deterministic model, it is possible

to analytically tell how many equilibrium states there are in the system. If the system is in its

equilibrium points, all the time derivatives of the models should be zero. Moreover, if the

eigenvalues of the Jacobian matrix of the system all have negative real parts, the equilibrium

point is stable; if some of the eigenvalues have positive real parts, the equilibrium point is

unstable (see Sayama, 2015, for explanations of this method). Therefore, the stabilities of the

equilibrium points are determined by the dominant eigenvalue (λd), which means the

eigenvalue with the largest real part. To know how many equilibrium points there are in the

system, we hold every time derivative zero except for dPT/dt, and then calculate how it

changes over PT. The result is shown in Figure A1 of Appendix A. Based on these results, we can

find that when AS is low, there is only one zero point at PT = 0. However, as AS increases, two

new equilibrium points appear.

The real part of these λds is shown in Table A1. In the one-equilibrium-point cases, that
point is stable; in the three-equilibrium-point cases, the first and the third points are stable,

but the second one is unstable. The first and the third point here correspond to the healthy and

the panic phase, respectively. The third equilibrium point only emerges when AS is sufficiently

large. The second (unstable) equilibrium point corresponds to the saddle point of the system.
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Ideally, the system can be in equilibrium there, but with a small disturbance, the system will

move to either of those two stable phases. Based on the results of stability analysis, we can

confirm the heuristic that the landscape we construct should have one or two phases,

depending on parameter values.

Checking Convergence and Determining the Simulation Length. Monte Carlo estimation

of the steady-state distribution is only valid if the simulation converges, which means that there

are enough data points sampled that the joint distribution of the variables will not change

even when the simulation length is extended. We checked this by comparing the distribution

of key variables in the initial, middle, and final stages of the simulation. With a simulation

length of 107 timesteps, the distributions in different stages are sufficiently stable (Figure A2).

Therefore, we use 107 as the simulation length for constructing landscapes.

Main Analysis

The Stability of States and Phases. For constructing the potential landscape function for each

possible state, we first estimate the steady-state distribution (PSS) of the model with Monte

Carlo simulation. The raw potential landscape function is defined in a high dimensional space,

where the dimension equals the number of variables in the model. To make this function

understandable, we need to perform a dimensionality reduction. This was done with a simple

but widely used approach, which is obtaining the marginal distributions (e.g., Li &Wang, 2013;

Zhang et al., 2019). This method is capable of visualizing up to three selected variables for the

model. Kernel smooth methods were used to calculate smooth distribution density with a

reduced set of variables each time, and Equation 8 was used to calculate the potential

landscape.

For the stability of phases, we first calculated the absolute stability by finding the local

minima of the potential function within each phase. Then, we looked for the minimum energy

path (MEP) and the saddle point between the two phases. The minimal energy path is the path

that the system would be most likely to travel from one local minimum to another if the

systemwas purely gradient. The point with the highest potential in theMEP is the saddle point.

It can be proved that this path should first go along the steepest ascending path from the

starting point and then go along the steepest descending path to the end point (E & Vanden-

Eijnden, 2010). Its geometric form, from which a Dijkstra algorithm (Dijkstra, 1959) can be

derived, was used to find the MEP (Heymann & Vanden-Eijnden, 2008). After that, the relative

stability defined by the barrier height was calculated as the potential difference between the

saddle point and the local minima. The geometric stability of the phases is described

qualitatively.
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The Effect of Parameters. To investigate the influence of parameters on the stability of the

phases, multiple simulations with different parameter values were performed. For a single

parameter, its value was sampled evenly within a parameter space. The range of this

parameter space is roughly centered around the original parameter values used by Robinaugh

et al. (2024) with a plausible width that is large enough to clearly show the influence of the

parameter on the potential landscape. The potential landscape was constructed separately for

each parameter value, and the barrier height was computed respectively. Later, the barrier

heights were compared across parameter values to show the influence of parameters on the

difficulty for the system to escape a certain phase and transition into another phase. For the

joint influence of two parameters, a sample grid was made for the combination of parameter

values, and the potential landscape was calculated for each condition.

Model Modification. Based on the information provided by the potential landscape, we

propose the following general strategy for model modification. In the first step, the problem of

the model is identified. It is usually some differences in stability between model outcome and

real-life phenomena. In the second step, the reason for this inconsistency is analyzed from the

potential landscape perspective. It can be that the stabilities of different phases are not

suitable, the barrier height between phases is too high or too low, or the landscape has more or

fewer phases than it should have. After that, the model is adjusted accordingly. For example,

adding or removing time derivative terms can tilt the landscape and stabilize the states in a

certain direction. Finally, both case simulation outputs and the potential landscape of the

modified model are checked to test if the problem has been solved. Using this strategy, we

analyzed a problem of the panic disorder model, provided a way of modification, and evaluated

the modified model.

Results

Stability of States and Phases

Among all the model variables, physical arousal (A), perceived threat (PT), and fear are the core

variables representing the symptoms of panic disorder. A higher value of these variables

represents higher symptom severity. Besides that, arousal schema (AS) represents the key

control variable for the disorder. Therefore, we first constructed potential landscapes for these

variables with the simplified model. In the potential landscape of A and PT (Figure 7a), we can

find two local minima. The position of the first one is at A = 0.01, PT = 0.00 (U = -4.47), and the

second one is at A = 0.63, PT = 0.73 (U = 3.01). The saddle point is at A = 0.38, PT = 0.41 (U =

3.99). The barrier heights are ΔU = 8.46 and ΔU = 0.98 for the two phases, respectively. The

first phase has a lower symptom severity, hence corresponds to the healthy phase of the
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system. The symptom severity of the second one is higher, hence corresponds to the panic

phase of the system. The potential of the local minimum within the healthy phase is lower

than that of the panic phase, and the barrier height of the healthy phase is higher than that of

the panic phase, indicating that the healthy phase has a higher absolute and relative stability.

Both phases show a regular circle-like shape, which means that the system state tends to

vibrate around the local minimum symmetrically in both A and PT directions. There is a single

pathway connecting them, which is the path that the system is likely to take when

transitioning from one to the other. For example, if the system is going from the healthy phase

to the panic phase, A and PT will increase together until the system reaches the region of the

panic phase.

The landscape of AS and fear is shown in Figure 7b. Similarly, the phase with a lower fear

level is the healthy phase, and the phase with a higher fear level is the panic phase. According

to the landscape, the panic phase only appears when AS is high enough. The local minimum

with lower fear is at AS = 0.77, fear = 0.01 (U = -3.08), and the local minimum with higher fear

is at AS = 0.78, fear = 0.68 (U = 2.83). The saddle point is at AS = 0.78, fear = 0.41 (U = 3.54). The

barrier heights are ΔU = 6.62 and ΔU = 0.71 for the two phases, respectively. Again, both

absolute and relative stability indices support that the healthy phase is more stable than the

panic phase. While the panic phase shows a circle-like shape, the healthy phase shows a

slender shape, indicating that the potential landscape is rather flat along the AS direction. This

shows that when AS is lower than the local minimum point (0.78), the higher and lower AS

ranges do not differ much in stability, which means there is little resistance for AS to increase

or decrease within the healthy phase. However, when AS is higher than the local minimum

point (0.78), there is a strong tendency for AS to decrease. This indicates that there are some

mechanisms in the system preventing AS from rising toomuch.

Besides the most central variables, the panic disorder model also has many other

elements. Here, we calculated the landscape of escape (E) and fear to show the stability-related

properties of E, which is an important behavioral mechanism in panic disorder. This potential

landscape is shown in Figure 7c. As the previous potential landscapes, this potential landscape

also shows two phases, with the healthy one being more stable than the panic phase (local

minimum in the healthy phase: E = 0.00, fear = 0.00, U = -4.97; local minimum in the panic

phase: E = 0.95, fear = 0.66,U = 3.10; saddle point: E = 0.34, fear = 0.55,U = 5.65; barrier heights:

ΔU = 10.63 and ΔU = 2.55). E is in a lower range when the system is in the healthy phase and in

a higher range when the system is in the panic phase, which indicates that the panic phase is

related to a higher tendency of escaping.
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Figure 7. Bivariate potential landscapes of (a) A and PT, (b) AS and fear, and (c) E and fear. All

three landscapes were constructed using the simplified model. The first plot in each row is the

2D heatmap with contours, and the second plot is the 3D surface plot. The white and red dots

on the 2D heatmaps represent the local minima of the phases and the saddle points,

respectively.

While the potential landscape (Figure 7c) around two local minima shows a regular shape,

the landscape between them shows a unique phenomenon: between the healthy phase and the

panic phase, there are two pathways instead of one. Between these two paths, there is also a
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small “hill” inside the “valley”. This indicates that there are two possible paths of transitioning

from one phase to the other. The path taken by the system from the healthy phase to the panic

phase is different from the path taken by the system from the panic phase back to the healthy

phase. For systems where two variables have asymmetric relationships (e.g., the Lotka–

Volterra predator-prey model), this type of behavior is not uncommon. It indicates that maybe

the process of a panic attack is a one-way street: if a panic attack has started, it may not be

possible to stop it before the fear level reaches its peak. Further, because the path taken by the

system from the healthy phase to the panic phase is different to the path from the panic phase

to the healthy phase, maybe it is possible to tell the transition direction from the state of the

system.7

Influence of Parameters

As mentioned earlier, AS is an important variable in the model that controls the stability of the

phases. In the constant AS model, AS is a parameter instead of a variable. Therefore, we can

first investigate AS again using the method for parameters. We constructed a series of

landscapes from the constant ASmodel (Figure 8a). Comparing those landscapes, we can find

that when AS is 0.3 or lower, there is only one phase in the system, namely the healthy phase.

The panic phase only appears when AS is 0.7 or higher. For the critical condition that AS = 0.5,

the system can go to the region of panic phase, but there is not a local minimum in that region

(i.e., the potential landscape increases monotonically in the direction towards higher A and E).

We call it a quasi-stable phase. Because there is no local minimum for a quasi-stable phase, its

potential value and barrier height cannot be calculated.

The barrier heights for the two phases are also shown in Figure 8a. As AS becomes larger,

the healthy phase gradually becomes more unstable, while the panic phase becomes more

stable. Nevertheless, the healthy phase is always more stable than the panic phase. These

results again confirm the findings above.

While AS is related to the relationship between A and PT, which is at the core of the

system, there are also some other variables whose effects are less obvious. Here we investigate

another parameter, ℎ�,� , as an example. This parameter represents the relationship between

physical arousal (A) and homeostatic feedback of arousal (H): the physical arousal at a later

point in time tends to reduce more if it is higher in the previous time point. A has a positive

influence on H and H has a negative influence on A. Therefore, the state of A is “stored” in H

and will be influenced byH later. When ℎ�,� is higher, the influence of A onH is weaker.

7 The landscape for AS, E, and fear also confirms the results above. In this landscape plot, three variables are represented
with x-, y-, and z-axis, and the potential value is represented by color. See the OSF repository (https://osf.io/ke3xb/) for the
visualization of this landscape.
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Figure 8. Bivariate potential landscapes of A and PTwith different (a) AS, (b) ℎ�,�, and (c) both

AS and ℎ�,� . The landscapes were constructed using the constant AS model. The first plot in

each row is the potential landscapes represented in 2D heatmaps. The white dots represent the

local minima of the phases in the landscape, the white lines connecting two white dots

represent the minimum energy path between two local minima, and the red dots represent the

saddle points in the paths. The second plot in (a) and (b) shows the barrier heights (ΔU) of

both phases in the potential landscapes for different parameter values. For cases where there is

only one phase in the system, it is not possible for the system to transition to an alternative

phase, hence the barrier height cannot be defined. Therefore, barrier heights were not

calculated for those cases.
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The landscapes and barrier heights are shown in Figure 8b. Comparing the landscapes

with different ℎ�,� values (Figure 8b) and those with different AS values (Figure 8a), we can

find that both parameters have a similar role in controlling the landscape of A and PT. When

arousal has weaker homeostatic feedback of arousal (i.e., when the delayed negative feedback

gets weaker), the panic phase gradually appears and stabilizes. If changing both parameters

together, their roles are similar and independent: increasing either will stabilize the healthy

phase of the system (see Figure 8c). This suggests that the same phenomenon of the system

(e.g., panic disorder) can stem from different underlyingmechanisms.

Guidance for Model Modification

Potential landscapes can also guide model modification, as we show here with the panic

disorder model as an example. As mentioned by Robinaugh et al. (2024), the problem of the

original model is that the system should have non-clinal panic attacks, but the model failed to

generate them. From the landscape with AS and fear (Figure 7b), we can see that the panic

phase only appears when AS is high enough. However, the landscape in the AS direction is

rather flat, which means that AS does not have a strong tendency to increase or decrease

within its plausible range. This is related to the problem mentioned above because whenever

AS happens to be in the high range, it does not go back. Hence, an increase in AS can easily lead

to a panic disorder.

To solve this problem, what we should do is tilt the landscape to make the low-AS region

more stable. The way to tilt the landscape is straightforward. As the gradient of the landscape

corresponds to the changing rate of the variables, we can simply add a negative term to the

dynamic function to tilt it towards zero. Here we added a small negative term to the time

derivative of AS:

d��
d�

= � � + − �extinction �� − ��baseline , �� > ��baseline
0, �� ≤ ��baseline

9

Where g(X) represents the terms in the original functions, and the term to the right of the

brace is the added term: when AS is larger than a given baseline value (ASbaseline), it declines

exponentially. This setting can add a small tendency towards lower AS around its critical range

while not letting it decline to zero. To distinguish this way of modification and the way in the

original paper by Robinaugh et al. (2019, which used a higher SE to increase the parameter hPT,E

as a constant; see Equation 4), we refer to the modification in Equation 9 as the AS extinction

modification and the modification by Robinaugh et al. (2024) as the escape schema modification.

Both modifications show a good effect on solving the problem in the original model. As

shown in Figure 9, for both modifications, the system can have a limited number of panic
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attacks without later going into a full-blown panic disorder. After the first panic attack, the AS

value of the original model increases and stays in a higher value until the next panic attack,

which further increases AS (Figure 3), whereas the AS value decreases after the first panic

attack for both modified models. The difference in the direction of change for AS shows the

effects of both modification mechanisms. The potential landscapes of both modifications are

shown in Figure 10. Comparing them with the landscape of the original model (Figure 7b), the

landscapes of those modified models show the expected tendency that the lower-AS region of

the healthy phase is more stable.

Figure 9. Model simulation results of fear and AS for the two modifications. The first panic

attack of the system appears probabilistically. To make simulation results comparable, time

was set as zero at the first panic attack (the time when the peak value of fear is reached). In the

AS extinction modification, rextinction = 0.001, ASbaseline = 0.5; in the escape schema modification,

SE = 0.

However, there are several important differences between the two modifications. For the

escape schema modification, the fear value reaches a higher peak level and the AS value

directly decreases after the panic attack; in the AS extinction model, the peak fear value is

similar to the case in the original model, and the AS value first increases before it declines back

to a lower value (Figure 9). Why is this the case? The landscapes of the models can provide
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further information. The general shape of the landscape of the AS extinction modification

(Figure 10a) is similar to the original model (Figure 7b), but only the stability of the lower AS

range of the healthy phase is increased. The shape of the landscape of the escape schema

modification (Figure 10b), however, is much different from the original model, especially

around the panic phase. There is a small island in the middle between the two phases. As

explained earlier (for the landscape of E and fear in Figure 7c), this indicates that the pathway

the system takes from the healthy phase to the panic phase is different than the other way

around, so that the system does not recover in the same way. In this model, this means that the

system goes to the panic phase when AS is high, and then the AS level declines during the same

panic attack. When the system goes back to the healthy phase, the AS value is already at a

lower level. In the original model and the AS extinction modification, AS decreases at a slower

time scale, so that the system recovers to the healthy phase with a similarly high AS value.

These differences enable further theoretical and empirical examinations of these two

modifications.

Figure 10. Bivariate potential landscapes of AS and fear for (a) the AS extinction modification

and (b) the escape schema modification. The first plot in each row is the 2D heatmap with

contours, and the second plot is the 3D surface plot. The white and red dots on the 2D

heatmaps represent the local minima of the phases and the saddle points, respectively.

Discussion

We here introduced a new method to construct potential landscapes for multivariate

psychological formal models. Based on the steady-state distribution, the stability of any state
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of the system can be quantified with the potential function. We illustrated the method with

the panic disorder model by Robinaugh et al. (2024). After several adjustments to the original

model, we constructed potential landscapes for the system and analyzed the absolute, relative,

and geometric stability of the healthy phase and the panic phase. Then, we examined the

influence of two model parameters on the potential landscape of the system. Finally, based on

the information from the potential landscape, we came up with a new way of model

modification and compared the simulation output and the potential landscape of it with the

modification suggested by Robinaugh et al. (2024).

The results of the potential landscape showed that there are one or two phases in the

system, depending on the parameter settings. The healthy phase is always present, while the

panic phase only appears under certain conditions (e.g., with high AS) and is always less stable

than the healthy phase. Increasing AS can thus stabilize the panic phase and destabilize the

healthy phase. These results are well aligned with the conclusions from the case simulations in

the original paper. It is important to note that we do not think that the potential landscape

method can or should replace case simulations. On the contrary, we claim that both methods

provide important information about the nature of psychological formal models. The

advantage of our method is that it can present the concept of stability in a clear, explicit way.

By filtering out the time-related information in the model output, the stability-related

information that does not change over time emerges clearly on the potential landscapes.

Instead of relying on the heuristics from observation, the stability of states is now specified as

positions in a potential landscape. Specifically, the stability of psychological phases can be

described accurately based on three aspects: absolute stability, relative stability, and geometric

stability. This makes the stability information more apparent for researchers, hence facilitating

understanding and communication of the models.

Moreover, the potential landscape method also enables easy investigation of variables

and parameters. A common problem for psychological formal models is that the number of

variables and parameters used for constructing the model is much higher than the critical

variables that are examined to evaluate the model. In this paper, we showed how to construct

the potential landscape for A, PT, AS, E, and fear and how the potential landscape changes with

AS and ℎ�,� . With the tools we provided in the simlandr package, the same landscape

constructionmethod can be easily extended to all other variables and parameters in the model.

Our method allows researchers to evaluate each of their variables and parameters

systematically and see if the resulting potential landscape is consistent with theory and

empirical findings, which parameter range produces the expected behavior, and how the
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parameters influence the stability. This not only makes model evaluation more effective and

comprehensive but also helps to clarify the scope and boundaries of a model or theory.

Based on the information from the potential landscape, we provided a new modification

of the original model. The advantage of using a stability measure to guide model modification

is that, in some cases, the discrepancy between model output and real-life phenomena is more

closely related to the stability of states or phases rather than the simulated trajectories. In the

case of the panic disorder model, for example, the problem of non-clinical panic attacks can be

directly attributed to the geometric stability of the healthy phase (i.e., its landscape on the AS

direction is too flat). Also, because of the close link between the potential landscape and the

dynamic functions, changing the landscape of the system is usually not difficult, making it

straightforward to solve the identified problems. In this work, we proposed a way of

modification for the panic disorder model based on its potential landscape. There is also a

possible theoretical explanation for this modification, namely fear extinction. After the

association (arousal schema, AS) between physical arousal (A) and perceived threat (PT) is

learned, even when there are no new fear-inducing events, the strength of this association still

decreases (Mattera et al., 2020; Milad & Quirk, 2012). It is important to emphasize that the

decision to add a negative value to the AS time derivative in the AS extinction modification was

inspired by the potential landscape of the model, not based on a theoretical analysis.

Nevertheless, it later helps to point out a direction in which researchers could search for

relevant theories.

Limitations and Possible Pitfalls

Despite the advantages of the method discussed above, we also want to point out several

limitations and possible pitfalls of our method. First, the potential landscape is calculated from

a generalized potential function. This means that it does not contain all the dynamic

information of the model. In other words, psychological systems are not totally the same as a

ball on a landscape. Some additional non-gradient forces also influence the system, which can

drive it in a different direction instead of the direct path towards the most stable state. For

example, in the landscape of E and fear, there are two paths connecting two phases of the

system. We suppose these paths are different in directions (i.e., the system state goes through

one path to the healthy phase and the other path to the panic phase). However, the choice of

which path to take is influenced by some non-gradient forces, which are not shown in the

potential landscape. In psychology, non-gradient forces may be related to emotional or

behavioral inertia, which means that some emotional or behavioral variables in the system

may be more resistant to change (e.g., E and fear in the panic disorder model; Alós-Ferrer et al.,
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2016; Kuppens et al., 2010). These non-gradient forces are canceled out when calculating the

stability of states. Nevertheless, researchers should be aware of their existence and investigate

their influences if the dynamic properties of the system are also a concern.

Second, to ensure the ergodicity in the Monte Carlo simulation, we added some noise

terms to the original model. We suggest that researchers do the same if their simulation is

difficult to converge. However, we want to point out that for some systems these noise terms

can affect the stability of phases. For example, Van den Broeck et al. (1994) showed that for a

specific kind of dynamic system, an ordered phase only exists if the noise is in a certain range.

The conditions under which noise terms can affect the stability of phases are not yet clear.

Further investigations on this issue are needed.

Third, although psychological models usually have a large number of variables, the

potential landscape can only be visualized in a lower (up to three) dimensional space. This

means one phase or transition path on the landscape can actually be several ones in the high-

dimensional space. For example, there is only one pathway between the healthy phase and the

panic phase in the landscape of A and PT, but two pathways in the landscape of fear and E.

Therefore, we suggest researchers look into different combinations of variables and investigate

how the phases and paths in those low dimension landscapes correspond.

Fourth, the potential landscape can only show the stability of individual states. For a

system that has periodic or chaotic phases (e.g., Schiepek et al., 2017), the potential landscape

may not be able to clearly represent its stability. In these cases, some preprocessing of the

original variables may be needed. For example, if two phases of a system have similar mean

values but differ in their variation, then the moving-window standard deviation can be used to

construct the landscape instead of the original variable values. The suitable way of

transformation depends on the exact system of interest.

Future Directions

Incorporating the potential landscape method opens up new avenues for psychological

(modeling) research. Here we want to point out several possible directions. First, there is still

much room to further develop the potential landscape method for psychological models. Apart

from the generalized potential function used in our work, there are also several other potential

functions that have different definitions and calculation methods (see P. Zhou & Li, 2016, for a

review). These methods may have a higher requirement for the form of dynamic functions, but

they also have strengths in representing other aspects of stability (e.g., the quasi-potential



Chapter 2

48

landscape by J. X. Zhou et al., 2012, emphasizes more on the transition path between states).

We encourage future research to test the use of thosemethods for psychological models.

Second, we encourage modelers to further explore the usage of this method and apply this

method to different kinds of models. In this paper, we showed several applications of the

potential landscape methods, namely representing stability, investigating the influence of

parameters, and guiding modifications, and the formal model we used is an emotion-

cognition-behavior model of a mental disorder. However, we are confident that the usage of

this method is not limited to this range. For example, it may be possible to draw a phase

diagram to show the parameter ranges where different phases exist and use the potential

landscape as a way to choose parameter values systematically. Some cognitive models also

have multistability (e.g., Kogo et al., 2011), which can possibly be analyzed with this method.

We look forward to future researchers exploring those possibilities.

Third, potential landscapes can also be helpful in clinical practice. Understanding

individual differences of psychological phases and clinical change processes is critical to

establish more effective therapies. From the potential landscape perspective, the difference in

people’s parameter values makes them differ in their vulnerability to mental disorders, and

successful therapies are related to changes in parameter values. This idea can be better

understood if we can construct landscapes with different parameters to represent different

individuals or different therapeutic stages. We illustrated how systems with different AS and

hA,H values differ in the stability of the healthy phase and the panic phase. These AS and hA,H

values may correspond to different individuals and/or stages. Apart from panic disorder, this

approach can also be readily applied for conceptualizing other mental disorders. Constructing

landscapes from empirical data, however, requires future methodological development.

Previous research found that recovering the psychological dynamics from experience sampling

data is difficult, while the distribution of psychological variables is more assessable (Haslbeck

& Ryan, 2021). The generalized potential landscape is defined from the steady-state

distribution of the system, which can be possibly estimated from the observed variable

distribution. Therefore, maybe fitting the potential landscape directly from empirical data is a

possible alternative to fitting the dynamic functions.

Finally, we want to note that, in the abstract sense, the form of psychological formal

models does not differ much from many dynamic models in biology, chemistry, and other

natural science fields. For example, we coincidentally found out that the panic disorder model

also has an equivalent form represented by chemical reactions (see A4. Equivalent chemical

representations in Appendix A). While formalizing psychological theory is a new trend in
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psychology, the same effort has been undertaken in many fields, with various analytical

methods readily available. With the current work as an example, we would encourage further

interdisciplinary cooperation in the psychological modeling field. We hope the insights from

expertise in all fields of science can somehow come together, helping us to better understand

human psychology, a complex yet fascinating subject.

Conclusion

The stability of states and phases is an important property for psychological formal models, yet

not concretely addressed with the common case simulation method. By incorporating the

generalized potential function by Wang et al. (2008) and Monte Carlo simulation, we

developed a method to construct the potential landscape for multivariate psychological

dynamic models. This method can contribute to a better understanding of the stability concept,

the influence of model parameters, and the way to modify a model. We hope this method can

help researchers to better evaluate and develop their models and ultimately help to guide

clinical practice in the future.
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Abstract

We present the simlandr package for R, which provides a set of tools for constructing potential

landscapes for dynamical systems using Monte Carlo simulation. Potential landscapes can be

used to quantify the stability of system states. While the canonical form of a potential function

is defined for gradient systems, generalized potential functions can also be defined for non-

gradient dynamical systems. Our method is based on the potential landscape definition from

the steady-state distribution, and can be used for a large variety of models. To facilitate

simulation and computation, we introduce several novel features, including data structures

optimized for batch simulations under varying conditions, an out-of-memory computation

tool with integrated hash-based file-saving systems, and an algorithm for efficiently searching

the minimum energy path. Using a multistable cell differentiation model as examples, we

illustrate how simlandr can be used for model simulation, landscape construction, and barrier

height calculation. The simlandr package is available at https://CRAN.R-project.org/package=

simlandr, under GPL-3 license.
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Introduction

To better understand a dynamical system, it is often important to know the stability of

different states. The metaphor of a potential landscape consisting of hills and valleys has been

used to illustrate differences in stability in many fields, including genetics (Waddington, 1966;

Wang et al., 2011), ecology (Lamothe et al., 2019), and psychology (Olthof et al., 2023). In such

a landscape, the stable states of the system correspond to the lowest points (minima) in the

valleys of the landscape. Just like a ball that is thrown in such a landscape will eventually

gravitate towards such a minimum, the dynamical system is conceptually more likely to visit

its stable states in which the system is also more resilient to noise. For example, in the

landscape metaphor of psychopathology (Figure 1), the valleys represent different mental

health states, their relative depth represents the relative stability of the states, and the barriers

between valleys represent the difficulty of transitioning between these states Hayes and

Andrews (2020). When the healthy state is more stable, the person is more likely to stay

mentally healthy, whereas when the maladaptive state is more stable, the person is more likely

to suffer frommental disorders.

Figure 1. Illustration of the ball-and-landscape metaphor commonly used in the field of

psychopathology.

Yet, formally quantifying the stability of states is a nontrivial question. Here we present

an R package, simlandr, that can quantify the stability of various kinds of systems without

manymathematical restrictions.

Dynamical systems are usually modeled by stochastic differential equations, which may

dependent on the past history (i.e., may be non-Markovian, Stumpf et al., 2021). They take the

general form of

d�� = � ��, �� d� + σ ��, �� d�, 1

where �� is the random variable representing the current state of the system and �� represent
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the past history of the system �� = {��|� ∈ [0, �)}1 . The first term on the right-hand side of

Equation 1 represents the deterministic part of the dynamics, which is a function of the

system’s current state � ��, �� . The second term represents the stochastic part, which is

standard white noise d�multiplied by the noise strength� ��, �� .

If the dynamical equation (Equation 1) can be written in the following form

d� =− ∇�d� + 2d�, 2

then � is the potential function of the system.2 However, this is not possible for general

dynamical systems. The trajectory of such system may contain loops which are not possible to

be represented by a gradient system (this issue was compared to Escher’s stairs by Rodríguez-

Sánchez et al., 2020). In this case, further generalization is needed. The theoretical background

of simlandr is the generalized potential landscape byWang et al. (2008), which is based on the

Boltzmann distribution and the steady-state distribution of the system. The Boltzmann

distribution is a distribution law in physics, which states the distribution of classical particles

depends on the energy level they occupy. When the energy is higher, the particle is

exponentially less likely to be in such states

� � ∝ exp −� . 3

This is then linked to dynamical systems by the steady-state distribution. The steady-state

distribution of stochastic differential equations is the distribution that does not change over

time, denoted by �SS which satisfies

∂�SS �, �
∂�

= 0. 4

The steady-state distribution is important because it extracts time-invariant information from

a set of stochastic differential equations. Substituting the steady-state distribution to Equation

3 givesWang’s generalized potential landscape function (Wang et al., 2008)

� � =− ln �SS � . 5

If the system has ergodicity (i.e., after sufficient time it can travel to all possible states in the

state space), the long-term sample distribution can be used to estimate the steady-state

distribution, and the generalized potential function can be calculated.

Our approach is not the only possible way for constructing potential landscapes. Many

other theoretical approaches are available, including the SDE decomposition method by Ao

(2004) and the quasi-potential by Freidlin and Wentzell (2012). Various strategies to

numerically compute these landscapes have been proposed (see Zhou & Li, 2016, for a review).

1 The corresponding variable representing positions in the state space is not a random variable, so we use lowercase x for
it. This convention will be followed throughout this article.

2Under zero inertia approximation.
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However, available realizations are still scarce. To our knowledge, besides simlandr, there are

two existing packages specifically for computing potential landscapes: the waydown package

(Rodríguez-Sánchez et al., 2020) and the QPot package (Dahiya & Cameron, 2018; Moore et al.,

2016). The waydown package uses the skew-symmetric decomposition of the Jacobian, which

theoretically produces landscapes that is similar to Wang et al. (2008; but see Cui et al. (2023)

for a potential technical issue with this package.) The QPot package uses a path integral

method that produces quasi-landscapes following the definition by Freidlin and Wentzell

(2012). Because of the analytical methods used by waydown and QPot, they both require the

dynamic function to be Markovian and differentiable in the whole state space. Moreover, they

can only be used for systems of up to two dimensions. simlandr, in contrast, is based on Monte

Carlo simulation and the steady-state distribution. It does not have specific requirements for

the model. Even for the models that are not globally differentiable, have history-dependence,

and are defined in a high-dimensional space, simlandr is still applicable (e.g., Cui, Lichtwarck-

Aschoff, Olthof, et al., 2023). Therefore, simlandr can be applied to a much wider range of

dynamical systems, illustrate a big picture of dominated attractors, and investigate how the

stability of different attractors may be influenced by model parameters. As a trade-off,

simlandr is not designed for rare events sampling in which the noise strength �� � is

extremely small, nor for the precise calculation of the tail probability and transition paths.

Instead, it is better to view simlandr as a semi-quantitative tool that provides a broad overview

of key attractors in dynamic systems, allowing for comparisons of their relative stability and

the investigation of system parameter influences. We will show some typical use cases of in

later sections. Some key terms used in this article are summarized in Table 1.

Table 1. Summary of key terms used in this article.

Term Explanation
Potential landscape
metaphor

A conceptual metaphor representing the stability of a complex
dynamic system as an uneven landscape, with a ball on it
representing the system’s state. This can be quantitatively realized in
various ways (Zhou and Li 2016).

Gradient system A systemwhose deterministic motion can be described solely by the
gradient of a potential function.

Non-Markovian system A systemwhose future evolution depends not only on its current state
but also on its past history.

Steady-state distribution The probability distribution of a dynamic system that remains
unchanged over time.

Ergodic system A dynamic system that, given enough time, will eventually pass
through all possible states.

Minimum energy path
(MEP)

A transition path linking two local minima and passing through a
saddle point (Wan et al. 2024). It is always parallel to the gradient of
the energy landscape, representing an efficient transition route.
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Design and Implementation

The general workflow of involves three steps: model simulation, landscape construction, and

barrier height computation. See Figure 2 for a summary.

Figure 2. The structure and workflow of simlandr.

Step 1: Model Simulation

For the first step, a simulation function should be created by the user. This function should be

able to simulate how the dynamical system of interest evolves over time and record its state in

every time step. This can often be done with the Euler-Maruyama method. If the SDEs are up

to three dimensions and Markovian, a helper function from simlandr, sim_SDE(), can also be

used. This function is based on the simulation utilities from the Sim.DiffProc package

(Guidoum & Boukhetala, 2020) and the output can be directly used for later steps. Moreover,

the multi_init_simulation() function can be used to simulate trajectories from various starting

points, thus reduce the possibility for system to be trapped in a local minimum. The

multi_init_simulation() function also supports parallel simulation based on the future

framework to improve the time efficiency (Bengtsson, 2021).

For Monte Carlo methods, it is important that the simulation converges, which means the

distribution of the system is roughly stable. The precision of the steady-state distribution
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estimation, according to Equation 5, determines the precision of the distribution estimation.

simlandr provides a visual tool to compare the sample distributions in different stages

(check_conv()), whereas the coda package (Plummer et al., 2006) can be used for more

advanced diagnostics. The output of the sim_SDE() and multi_init_simulation() functions also

used the classes from the coda package to enable easy convergence diagnosis. To achieve

ergodicity in reasonable time, sometimes stronger noises need to be added to the system.

A simulation function is sufficient if the user is only interested in a single model setting. If

the model is parameterized and the user want to investigate the influence of parameters on the

stability of the system, then multiple simulation need to be run with different parameter

settings. simlandr provides functions to perform batch simulations and store the outputs for

landscape construction as one object. This can later be used to compare the stability under

different parameter settings or produce animations to show how amodel parameter influences

the stability of the model.

In many cases, the output of the simulation is so large that it cannot be properly stored in

the memory. simlandr provides a hash_big_matrix class, which is a modification of the

big.matrix class from the bigmemory package (Kane et al., 2013), that can perform out-of-

memory computation and organize the data files in the disk. In an out-of-memory

computation, the majority of the data is not loaded into the memory, but only the small subset

of data that is used for the current computation step. Therefore, the memory occupation is

dramatically reduced. The big.matrix class in the bigmemory package provides a powerful tool

for out-of memory computation. It, however, requires an explicit file name for each matrix,

which can be cumbersome if there are many matrices to be handled, and this is likely to be the

case in a batch simulation. The hash_big_matrix class automatically generates the file names

using the md5 values of the matrices with the digest package (Eddelbuettel et al., 2021) and

store it within the object. Therefore, the file links can also be restored automatically.

Step 2: Landscape Construction

Simlandr provides a set of tools to construct 2D, 3D, and 4D landscapes from single or multiple

simulation results. The steady-state distribution for selected variables of the system is first

estimated using the kernel density estimates (KDE). The density function in R is used for 2D

landscapes, whereas the ks package (Duong, 2021) is used by default for 3D and 4D landscapes

because of its higher efficiency. Then the potential function � is calculated from Equation 5.

The landscape plots without a z-axis are created with ggplot2 (Wickham, 2016), and those

with a z-axis are created with plotly (Sievert, 2020). These plots can be further refined using
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the standard ggplot2 or plotly methods. See Table 2 for an overview of the family of landscape

functions.

Table 2. Overview of various landscape functions provided by simlandr. Dimensions in bold

represent the potential U calculated by the function. Dimensions in italic represent model

parameters. Dimensions in parentheses are optional.

Type of Input Function Dimensions

Single simulation data make_2d_static() x, y

make_3d_static() (1) x, y, z+color; (2) x, y, color

make_4d_static() x, y, z, color

Multiple simulation

data

make_2d_matrix() x, y, cols, (rows)

make_3d_matrix() x, y, z+color, cols, (rows)

make_3d_animation() (1) x, y, z+color, fr; (2) x, y, color, fr; (3) x, y,

z+color, cols

Step 3: Barrier Height Calculation

An important property of the states in a landscape is their stability, which can be indicated by

the barrier height that the system has to overcome when it transitions between one stable

state to another adjacent state (see Cui, Lichtwarck-Aschoff, Olthof, et al., 2023, for further

discussions about different stability indicators). The barrier height is also related to the escape

time that the system transition from one valley to another, which can be tested empirically

(Wang et al., 2008). simlandr provides tools to calculate the barrier heights from landscapes.

These functions look for the local minima in given regions and try to find the saddle point

between two local minima. The potential differences between the saddle point and local

minima are calculated as barrier heights.

In 2D cases, there is only one possible path connecting two local minima. The point on the

path with the highest � is identified as the saddle point. For 3D landscapes, there are multiple

paths between two local minima. If we treat the system as if it is a gradient system with

Brownian noise, then the most probable path (termed as the minimum energy path, MEP) that

the system transitions is that it first goes along the steepest ascent path from the starting point,

and then goes along the steepest descent path to the end point (E & Vanden-Eijnden, 2010). We

find this path by minimizing the following action using the Dijkstra (1959) algorithm

(Heymann & Vanden-Eijnden, 2008)
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φMEP = ���min
� �

�
∇� dφ ≈ ���min

�
Σ� ∇�� Δφ�� , 6

where � and � are the starting and end points and � is the path starting at � and ending

in � . After that, the point with the maximum potential value on the MEP is identified as the

saddle point. Note that while the barrier height still indicates the stability of local minima, the

MEP may not be the true most probable path for a nongradient system to transition between

stable states.

Examples

We use two dynamical systems to illustrate the usage of the simlandr package. The first one is

a two-dimensional stochastic non-gradient gene expression model, which was used by Wang

et al. (2011) to represent cell development and differentiation. The second example is a

dynamic model of panic disorder Robinaugh et al. (2024) which contains much more variables

and parameters, non-Markovian property, and non-differentiable formulas. Wemainly use the

first example to show the agreement of the results from simlandr with previous analytic

results, and the second example as a typical use case of a complex dynamic model which is not

treatable with other methods (also see Cui, Lichtwarck-Aschoff, Olthof, et al., 2023, for more

substantive discussions). Note that, either system includes more than two variables, making it

impossible to perform the landscape analysis with other available R packages.

Example 1: The Gene ExpressionModel

This model is built on the mutual regulations of the expressions of two genes, in which �1 and

�2 represent the expression levels of two genes which activate themselves and inhibit each

other. A graphical illustration is shown in Figure 3 (adapted from Wang et al., 2011). Their

dynamic functions can be written as

d�1

d� =
��1

�

�� + �1
� +

���

�� + �2
� − ��1 + σ1

d�1

d� ,

d�2

d�
=

��2
�

�� + �2
� +

���

�� + �1
� − ��2 + σ2

d�2

d� ,

d�
d�

=− λ� + σ3
d�3

d�
, 7

where � represents the strength of self-activation, � represents the strength of mutual-

inhibition, and � represents the speed of degradation. The development of an organism is

modeled as � decreasing at a certain speed �. In the beginning, there is only one possible state

for the cell. After a certain milestone, the cell differentiates into one of the two possible states.
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Figure 3. A graphical illustration of the relationship between the activation levels of the two

genes. Solid arrows represent positive relationships (i.e., activation) and dashed arrows

represent negative relationships (i.e., inhibition).

This model can be simulated using the sim_SDE() function in simlandr, with the default

parameter setting � = 1, � = 1, � = 0.5, � = 4, � = 0.01, and �1 = �2 = �3 = 0.2.

# Load the package.

library(simlandr)

# Specify the simulation function.

b <- 1

k <- 1

S <- 0.5

n <- 4

lambda <- 0.01

drift_gene <- c(rlang::expr(z * x^(!!n)/((!!S)^(!!n) + x^(!!n)) + (!!b) *

(!!S)^(!!n)/((!!S)^(!!n) + y^(!!n)) - (!!k) * x), rlang::expr(z * y^(!!n)/((!!S)

^(!!n) +

y^(!!n)) + (!!b) * (!!S)^(!!n)/((!!S)^(!!n) + x^(!!n)) - (!!k) * y),

rlang::expr(-(!!lambda) * z)) |>

as.expression()

diffusion_gene <- expression(0.2, 0.2, 0.2)

# Perform a simulation and save the output.

set.seed(1614)

single_output_gene <- sim_SDE(drift = drift_gene, diffusion = diffusion_gene,

N = 1e+06, M = 10, Dt = 0.1, x0 = c(0, 0, 1), keep_full = FALSE)

After the simulation, we perform some basic data wrangling to produce a dataset that can

be used for further analysis. We create a new variable delta_x as the difference between X1 (X)

and X2 (Y), andwe rename the variable Z as a.

single_output_gene2 <- do.call(rbind, single_output_gene)

single_output_gene2 <- cbind(single_output_gene2[, "X"] - single_output_gene2[,
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"Y"], single_output_gene2[, "Z"])

colnames(single_output_gene2) <- c("delta_x", "a")

We then perform the convergence check on the simulation result. First, we convert the

simulation output to the format for the coda package, and thin the output to speed up the

convergence check.

single_output_gene_mcmc_thin <- as.mcmc.list(lapply(single_output_gene,

function(x) x[seq(1, nrow(x), by = 100), ]))

We then shown the convergence diagnosis plot to check the convergence of the

simulation in Figure 4. The distribution of the two key variables in different simulation stages

are converging, indicating that the simulation is long enough to provide reliable estimation of

the steady-state distribution. Other convergence checks can also be readily performed using

the coda package.

plot(single_output_gene_mcmc_thin)

We generated the 3D landscape for this model with make_3d_single(). Here, we sse x, y to

specify the variables of interest, and use lims to specify the limits of the x and y axes for the

landscape. The lims argument can be left blank, then the limits will be automatically

calculated.

l_single_gene_3d <- make_3d_single(single_output_gene2, x = "delta_x",

y = "a", lims = c(-1.5, 1.5, 0, 1.5), Umax = 8)

Figure 4. The convergence check result for the simulation of the gene expressionmodel. The

variables in different simulation stages did not show distributional differences, indicating that

the simulation is long enough to provide a reliable estimation of the steady-state distribution.
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The resulted landscape is shown in the left panel of Figure 5. In this plot, the x-axis

represents �� = �1 − �2 , and the y-axis represents � . To compare with, the potential

landscape obtained analytically by Wang et al. (2011) is shown in the right panel of Figure 5.

The result of simlandr appears to be very close to the result based on the analytical derivation.

Note that because different normalization methods were used, the � values of the two

landscapes are not directly comparable. Here, we are mainly interested in their relative shape.

plot(l_single_non_grad_3d)

Figure 5. The 3D landscape (potential value as z-axis) for the gene expression model. The left

panel is the plot produced by simlandr; the right panel is the potential landscape obtained

analytically by Wang et al. (2008), reproduced with the permission of the authors and in

accordance with the journal policy.

We then calculate the barrier for the landscape using calculate_barrier(). The barrier is

calculated by specifying the start and end locations, and the radii of the start and end locations.

The height of the barrier from two sides can be calculated with get_barrier_height().

b_single_gene_3d <- calculate_barrier(l_single_gene_3d, start_location_value = c(0,

1.2), end_location_value = c(1, 0.2), start_r = 0.3, end_r = 0.3)

get_barrier_height(b_single_gene_3d)

## delta_U_start delta_U_end

## 2.572507 2.829729

The local minima, the saddle point, and the MEP can be added to the landscape with

autolayer(), shown in Figure 6.

plot(l_single_gene_3d, 2) + autolayer(b_single_gene_3d)
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Figure 6. The landscape for the gene expression model. The local minima aremarked as white

dots, the saddle points aremarked as red dots, and theMEPs are marked as white lines.

Next, we use multiple simulations to investigate the influence of two parameters, � and �,

on the stability of the system. As explained above, the parameter � represents the strength of

mutual-inhibition between the two genes. Therefore, as � increases, we expect the

differentiation is more extreme, that is, the cell is more likely to develop into one of the two cell

types with very different gene expression levels. The valleys in the landscape representing the

two types will become further apart and the barrier becomes clearer. The parameter �

represents the speed of degradation of the gene products. As � increases, the gene products

degrade faster, and this effect is more pronounced when the gene products are at high levels.

Therefore, the dominant gene will express in a less extreme level, and we expect that the two

valleys become closer, and the barrier will become less clear as � increases.

We use the batch simulation functions of simlandr. First, we create the argument set for

the batch simulation. This specifies the parameters to be varied. We examined three � values,

0.5, 1, 1.5, and three � values, 0.5, 1, 1.5, which form 9 possible combinations.

batch_arg_set_gene <- new_arg_set()

batch_arg_set_gene <- batch_arg_set_gene |>

add_arg_ele(arg_name = "parameter", ele_name = "b", start = 0.5, end = 1.5,

by = 0.5) |>

add_arg_ele(arg_name = "parameter", ele_name = "k", start = 0.5, end = 1.5,

by = 0.5)

batch_grid_gene <- make_arg_grid(batch_arg_set_gene)

We then perform the batch simulation with the batch_simulation() function. Here, we

specify the simulation function to be used, which is similar to single simulation we showed

above, together with the data wrangling procedure. The simulation function is defined with
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the sim_fun argument. We also use bigmemory = TRUE to store the simulation results in the

hash_big_matrix format, which is morememory-efficient.

batch_output_gene <- batch_simulation(batch_grid_gene, sim_fun = function(parameter)

{

b <- parameter[["b"]]

k <- parameter[["k"]]

drift_gene <- c(rlang::expr(z * x^(!!n)/((!!S)^(!!n) + x^(!!n)) + (!!b) *

(!!S)^(!!n)/((!!S)^(!!n) + y^(!!n)) - (!!k) * x), rlang::expr(z *

y^(!!n)/((!!S)^(!!n) + y^(!!n)) + (!!b) * (!!S)^(!!n)/((!!S)^(!!n) +

x^(!!n)) - (!!k) * y), rlang::expr(-(!!lambda) * z)) |>

as.expression()

set.seed(1614)

single_output_gene <- sim_SDE(drift = drift_gene, diffusion = diffusion_gene,

N = 1e+06, M = 10, Dt = 0.1, x0 = c(0, 0, 1), keep_full = FALSE)

single_output_gene2 <- do.call(rbind, single_output_gene)

single_output_gene2 <- cbind(single_output_gene2[, "X"] - single_output_gene2[,

"Y"], single_output_gene2[, "Z"])

colnames(single_output_gene2) <- c("delta_x", "a")

single_output_gene2

}, bigmemory = TRUE)

If the output is saved in an RDS file, upon next use, it can be read as follows.

saveRDS(batch_output_gene, "batch_output_gene.RDS")

batch_output_gene <- readRDS("batch_output_gene.RDS") |>

attach_all_matrices()

We thenmake the 3Dmatrix for the batch output, usingmake_3d_matrix().

l_batch_gene_3d <- make_3d_matrix(batch_output_gene, x = "delta_x", y = "a",

cols = "b", rows = "k", lims = c(-5, 5, -0.5, 2), h = 0.005, Umax = 8,

kde_fun = "ks", individual_landscape = TRUE)

For the barrier calculation step, the start and end points of the barrier may be different for

each landscape plot. The following code shows how to create a barrier grid for each landscape

plot. First, we create a barrier grid template using the function make_barrier_grid_3d(). Next,

wemodify the barrier grid template to create a barrier grid for the landscape plot.

make_barrier_grid_3d(batch_grid_gene, start_location_value = c(0, 1.5),

end_location_value = c(1, -0.5), start_r = 1, end_r = 1, print_template = TRUE)
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## structure(list(start_location_value = list(c(0, 1.5), c(0, 1.5

## ), c(0, 1.5), c(0, 1.5), c(0, 1.5), c(0, 1.5), c(0, 1.5), c(0,

## 1.5), c(0, 1.5)), start_r = list(c(1, 1), c(1, 1), c(1, 1), c(1,

## 1), c(1, 1), c(1, 1), c(1, 1), c(1, 1), c(1, 1)), end_location_value = list(

## c(1, -0.5), c(1, -0.5), c(1, -0.5), c(1, -0.5), c(1, -0.5

## ), c(1, -0.5), c(1, -0.5), c(1, -0.5), c(1, -0.5)), end_r = list(

## c(1, 1), c(1, 1), c(1, 1), c(1, 1), c(1, 1), c(1, 1), c(1,

## 1), c(1, 1), c(1, 1))), row.names = c(NA, -9L), class = c("arg_grid",

## "data.frame"))

## ele_list b k start_location_value start_r end_location_value end_r

## 1 0.5, 0.5 0.5 0.5 0.0, 1.5 1, 1 1.0, -0.5 1, 1

## 2 1.0, 0.5 1.0 0.5 0.0, 1.5 1, 1 1.0, -0.5 1, 1

## 3 1.5, 0.5 1.5 0.5 0.0, 1.5 1, 1 1.0, -0.5 1, 1

## 4 0.5, 1.0 0.5 1.0 0.0, 1.5 1, 1 1.0, -0.5 1, 1

## 5 1, 1 1.0 1.0 0.0, 1.5 1, 1 1.0, -0.5 1, 1

## 6 1.5, 1.0 1.5 1.0 0.0, 1.5 1, 1 1.0, -0.5 1, 1

## 7 0.5, 1.5 0.5 1.5 0.0, 1.5 1, 1 1.0, -0.5 1, 1

## 8 1.0, 1.5 1.0 1.5 0.0, 1.5 1, 1 1.0, -0.5 1, 1

## 9 1.5, 1.5 1.5 1.5 0.0, 1.5 1, 1 1.0, -0.5 1, 1

bg_gene <- make_barrier_grid_3d(batch_grid_gene, df = structure(list(start_location

_value = list(c(0,

1.5), c(0, 1.5), c(0, 1.5), c(0, 1.5), c(0, 1.5), c(0, 1.5), c(0, 1.5),

c(0, 1.5), c(0, 1.5)), start_r = list(c(0.2, 1), c(0.2, 1), c(0.2,

1), c(0.2, 0.5), c(0.2, 0.5), c(0.2, 0.5), c(0.2, 0.3), c(0.2, 0.3),

c(0.2, 0.3)), end_location_value = list(c(2, 0), c(2, 0), c(2, 0),

c(1, 0), c(1, 0), c(1, 0), c(1, 0), c(1, 0), c(1, 0)), end_r = list(c(1,

1), c(1, 1), c(1, 1), c(1, 1), c(1, 1), c(1, 1), c(1, 1), c(1, 1),

c(1, 1))), row.names = c(NA, -9L), class = c("arg_grid", "data.frame")))

With the barrier grid template, we can calculate the barrier for each landscape plot.

b_batch_gene_3d <- calculate_barrier(l_batch_gene_3d, bg = bg_gene)

If the barrier grid was not needed, the following code can be used to calculate the barrier.

b_batch_gene_3d <- calculate_barrier(l_batch_gene_3d, start_location_value = c(0,

1.5), end_location_value = c(1, 0), start_r = 1, end_r = 1)

The resulted landscapes and theMEPs between states are shown in Figure 7.

plot(l_batch_gene_3d) + autolayer(b_batch_gene_3d)
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From the landscapes, it is clear that increasing � , which represents higher strength of

gene mutual prohibition, makes the two differentiated states further apart from each other.

Increasing �, which represents faster degradation, makes the undifferentiated state disappear

earlier, thus makes the differentiation earlier. When � is low enough and � is high enough,

there is no differentiation anymore because the two differentiated states merge together and

form amore stable state at �� = 0. In this case, there is no actual differentiation in the system,

but only a one-to-one conversion of cell types. Only when � is high enough and � is low

enough is it possible for the cell to differentiate into two types.

Figure 7. The landscape for the gene expressionmodel of different � and � values. The local

minima are marked as white dots, the saddle points aremarked as red dots, and theMEPs are

marked as white lines.

Example 2: Panic DisorderModel

The second example we use is the panic disorder model proposed by Robinaugh et al., (2024).

The model is implemented in the PanicModel package (https://github.com/jmbh/PanicModel).

It contains 12 variables and 33 parameters and also involves history dependency and non-diffe
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rentiable formula (such as if-else conditions) to model the complex interplay of individual and

environmental elements in different time scales. The most important variables of the model ar

e the physical arousal (�) of a person (e.g., heart beat, muscle tension, sweating), the person’s

perceived threat (��, how dangerous the person cognitively evaluate the environment), and th

e person’s tendency to escape from the situation (�). The core theoretical idea of the model is t

hat physical arousal and perceived threat of a person may strengthen each other in certain circ

umstances, leading to sudden increases in both variables, manifesting as panic attacks. The ten

dency that a person tends to use physical arousal as cognitive evidence of threat is represented

by another variable, arousal schema �. A comprehensive introduction of the model is beyond t

he scope of the current article, andwe would like to refer interested readers to Robinaugh et al.

(2024). Here, to simplify the context, we assume that�� does not change over time, and no psy

chotherapy is being administered. We focus on the influence of �� on the system’s stability rep

resented by � and ��. A graphical illustration of several core variables of this model is shown i

n Figure 8 (adapted fromCui, Lichtwarck-Aschoff, Olthof, et al., 2023).

Figure 8. A graphical illustration of the relationships between several important psychological

variables in the panic disorder model. Solid arrows represent positive relationships and dashed

arrows represent negative relationships.

To construct the potential landscapes for this model, we first create a function that

performs a simulation using the simPanic() function from PanicModel. This is required as we

need to modify some default options for illustration.

library(PanicModel)

sim_fun_panic <- function(x0, par) {

# Change several default parameters

pars <- pars_default

# Increase the noise strength to improve sampling efficiency

pars$N$lambda_N <- 200

# Make S constant through the simulation

pars$TS$r_S_a <- 0
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pars$TS$r_S_e <- 0

# Specify the initial values of A and PT according to the format

# requirement by `multi_init_simulation()`, while the other

# variables use the default initial values.

initial <- initial_default

initial$A <- x0[1]

initial$PT <- x0[2]

# Specify the value of S according to the format requirement by

# `batch_simulation()`.

initial$S <- par$S

# Extract the simulation output from the result by simPanic().

# Only keep the core variables.

return(as.matrix(simPanic(1:5000, initial = initial, parameters = pars)$outmat[,

c("A", "PT", "E")]))

}

We then perform a single simulation from multiple starting points. To speed up the

simulation, we use parallel computing.

future::plan("multisession")

set.seed(1614, kind = "L'Ecuyer-CMRG")

single_output_panic <- multi_init_simulation(sim_fun = sim_fun_panic, range_x0 = c

(0, 1, 0, 1), R = 4, par = list(S = 0.5))

The convergence check results of the simulation, shown in Figure 9, indicate that the time

series of the first 100 data points are strongly influenced by the choice of initial value.

Therefore, we remove the first 100 data points in the following analysis.

plot(single_output_panic)

We then create the 3D landscape for the panic disorder model, shown in Figure 10. The

landscape shows that the system has two stable states, which are represented by the valleys in

the landscape. The system can be trapped in these valleys, leading to different levels of

physical arousal and perceived threat. The valley with higher potential value represents a state

with higher physical arousal and perceived threat, which corresponds to a panic attack. In

contrast, the valley with lower potential value represents a state with lower physical arousal

and perceived threat, which corresponds to a healthy state.
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Figure 9. The convergence check result for the simulation of the panic disorder model.

Figure 10. The 3D landscape (potential value as color) for the panic disorder model

We now investigate the effect of the parameter S on the potential landscape. This

parameter represents the tendency that a person consider physical arousal as a sign of danger.

Therefore, we expect that higher S will stabilize the panic state and destabilize the healthy

state.

We perform a batch simulation with varying S values to construct the potential

landscapes for different S values. This, again, starts with the creation of a grid of parameter

values.
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batch_arg_grid_panic <- new_arg_set() |>

add_arg_ele(arg_name = "par", ele_name = "S", start = 0, end = 1, by = 0.5) |>

make_arg_grid()

We then perform the batch simulation using parallel computing.

future::plan("multisession")

set.seed(1614, kind = "L'Ecuyer-CMRG")

batch_output_panic <- batch_simulation(batch_arg_grid_panic, sim_fun = function(par)

{

multi_init_simulation(sim_fun_panic, range_x0 = c(0, 1, 0, 1), R = 4,

par = par) |>

window(start = 100)

})

The 3D landscapes for different S values are shown in Figure 11. The landscapes show that

the system only has one stable state when S is low, but has two stable states when S is high.

The stability of the panic state also increases when S is higher. This indicates that a higher S

value corresponds to a higher risk of panic attacks.

l_batch_panic_3d <- make_3d_matrix(batch_output_panic, x = "A", y = "PT",

cols = "S", h = 0.005, lims = c(-1, 1.5, -0.5, 1.5))

plot(l_batch_panic_3d)

Figure 11. The landscape for the panic disorder model of different � values. Two landscapes are

shown for different variable combinations,� and��, or� and�.
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Discussion

Potential landscapes can show the stability of states for a dynamical system in an intuitive and

quantitative way. They are especially informative for multistable systems. In this article, we

illustrated how to construct potential landscapes using simlandr. The potential landscapes

generated by simlandr are based on the steady-state distribution of the system, which is in

turn estimated using Monte Carlo simulation. Compared to analytic methods, Monte Carlo

estimation is more flexible and thus more applicable for complex models. The flexibility comes

together with a higher demand for time and storage, which is necessary to make the

estimation precise enough. The hash_big_matrix class partly solved this problem by dumping

the memory storage to hard disk space. Also, it is important that the simulation function itself

is efficient enough. The functions sim_SDE() and multi_init_simulation() make use of the

efficient simulations provided by Sim.DiffProc (Guidoum & Boukhetala, 2020) and the parallel

computing with the future framework (Bengtsson, 2021). For customized simulation functions,

there are also multiple approaches that can be used to improve the performance, for which we

refer interested readers to Wickham (2019). In Online Supplementary Materials A (available at

https://osf.io/9kgx7/), we provide a benchmark of the typical time and memory usage of the

procedures in simlandr. From there, we can see that time and memory usage are acceptable in

most cases on a personal computer. When the transition between attractors is rare, the

multi_init_simulation() function may help to speed up the convergence, and more advanced

sampling methods like importance sampling or rare event sampling may be needed in more

complex situations. The detailed ways to implement such methods are highly dependent on

the specific model and are beyond the scope of this package. We direct interested readers to

Rubino and Tuffin (2009) and Kloek and van Dijk (1978) for a comprehensive review of rare

event simulation methods. Nevertheless, the landscape construction functions in simlandr

allow users to provide weights for the simulation results, which can be used to adjust the

sampling distribution.

In addition, the length of the simulation and the choice of noise strength may also have an

important influence on the results. If the length is too short, the density estimation will be

inaccurate, resulting in rugged landscapes. If the length is too long, the simulation part would

require more computational resources, which is not always realistic. If the noise is too weak,

the system may not be able to converge in a reasonable time, resulting in problems in

convergence checks, overly noisy landscapes, or failure to show valleys that are theoretically

present. If the noise is too strong, the simulation may be unstable and the boundaries between

valleys may be blurry. In Online Supplementary Materials B (available at https://osf.io/9kgx7/),
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we showed the influence of simulation length and noise strength on the landscape output.

With some theoretical expectation of the system’s behavior, it is not difficult to spot that the

simulation is too short, or the noise level might be unsuitable. In that case, some adjustments

are required before the landscape can be well constructed.

All landscape construction and barrier calculation functions in simlandr contain both

visual aids and numerical data that can be used for further processing. The html plots based on

plotly are more suitable for interactive illustrations, while it is also possible to export them to

static plots using plotly::orca(). The ggplot2 plots are readily usable for flat printing.

We also want to note some limitations of the potential landscape generated by simlandr.

First, the generalized potential landscape is not a complete description of all dynamics in a

system. It emphasizes the stability of different states by filtering out other dynamical

information. Some behaviors are not possible in gradient systems (e.g., oscillations and loops),

thus cannot be shown in a potential landscape (Zhou & Li, 2016). Second, since the steady-

state distribution is estimated using a kernel smoothing method, which depends on stochastic

simulations, the resulting potential function may not be highly accurate. Its accuracy is further

affected by the choice of kernel bandwidth and noise strength. This issue is particularly

pronounced at valley edges, where fewer samples are available for estimation. Similar

limitations apply to MEP calculations, as they are derived from the generalized landscape

rather than the original dynamics. Therefore, we do not recommend directly interpreting the

potential function or barrier height results for applications requiring high precision. Instead,

the potential landscape is best used as a semi-quantitative tool to gain insights into the

system’s overall behavior, guide further analysis, and compare system behavior under different

parameter settings, provided the same simulation and kernel estimation conditions are used.

The examples in this article illustrated some typical use cases we recommend.

Availability and Future Directions

This package is publicly available from the Comprehensive R Archive Network (CRAN) at

https://CRAN.R-project.org/package=simlandr, under GPL-3 license. The results in the current

article were generated with simlandr 0.4.0 version. R script to replicate all the results in this

article can be found at https://osf.io/9kgx7/.

The barrier height data calculated by simlandr can also be further analyzed and visualized.

For example, sometimes it is helpful to look into how the barrier height changes with varying

parameters (e.g., Cui et al. (2023)). We encourage users to explore other ways of analyzing and

visualizing the various results provided by simlandr.
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The methodwe chose for simlandr is not the only possible one. The generalized landscape

by Wang et al. (2008), which we implemented, is more flexible and emphasizes the possibility

that the system is in a specific state, while other methods may have other strengths (e.g., the

method by Rodríguez-Sánchez et al., 2020, emphasizes the gradient part of the vector field,

and the method by Moore et al., 2016, emphasizes the possibility of transition processes under

small noise). We look forward to future theoretical and methodological developments in this

direction.
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Chapter 4
Unlocking Nonlinear Dynamics and Multistability from Intensive
Longitudinal Data: A Novel Method

This chapter is based on:
Cui, J., Hasselman, F., & Lichtwarck-Aschoff, A. (2023). Unlocking nonlinear dynamics
and multistability from intensive longitudinal data: A novel method. Psychological
Methods. https://doi.org/10.1037/met0000623
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Abstract

The availability of smart devices has made it possible to collect intensive longitudinal data

(ILD) from individuals, providing a unique opportunity to study the complex dynamics of

psychological systems. Existing time-series methods often have limitations, such as assuming

linear interactions or having restricted forms, leading to difficulties in capturing the complex

nature of these systems. To address this issue, we introduce fitlandr, a method with

implementation as an R package that integrates nonparametric estimation of the drift-

diffusion function and stability landscape. The drift-diffusion function is estimated using the

Multivariate Kernel Estimator (MVKE, Bandi & Moloche, 2018), and the stability landscape is

estimated through Monte-Carlo estimation of the steady-state distribution (Cui et al., 2021,

2022). Using a simulated emotional system, we demonstrate that fitlandr can effectively

recover bistable dynamics from data, even in the presence of moderate noise, and that it

primarily relies on dynamic information from the system instead of distributional information.

We then apply the method to two empirical single-participant ESM datasets and compared the

results with the simulation datasets. Whereas both datasets show a bimodal distribution,

fitlandr only revealed bistability in one of them, indicating that bimodality in ILD does not

necessarily imply the existence of bistability in the underlying system. These results

demonstrate the potential of fitlandr as a tool for uncovering the rich, nonlinear dynamics of

psychological systems from ILD.
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Introduction

Psychologists have a long-standing interest in understanding changes in mental states over

time. With the rise of smart devices, intensive longitudinal data (ILD) from individuals are

now readily available, providing new opportunities to study the evolution of psychological

systems (Hamaker et al., 2015; Myin-Germeys & Kuppens, 2021; Trull & Ebner-Priemer, 2009).

The new type of data not only brings about new information but also bears challenges that call

for innovative analytical methods. Psychological systems, like other complex systems in nature,

consist of a large number of elements interacting continuously and nonlinearly (Olthof et al.,

2020, 2023). As a result, bimodality and multimodality, which means that the data

distribution has two or more modes instead of only one mode in a Gaussian distribution, are

the rule rather than the exception (Delignières et al., 2004; Haslbeck et al., 2023; Haslbeck &

Ryan, 2022). Also, change processes are characterized by sudden changes or regime shifts,

indicating the nonstationarity of the data (Helmich et al., 2020; Olthof et al., 2020). Most

existing models assume constant linear interactions of variables discretely and are therefore

less suited to handle data that showmultimodality and nonstationarity.

Additionally, previous methods primarily focus on the dynamics of a complex

psychological system (i.e., indicating the most probable direction of the system at the next

time point based on its current state.) But next to these dynamics, it is also essential to gain a

deeper understanding of the system's stability. The stability of a system describes the number

of qualitatively different phases in the system, the range of these phases, and in which phase

the system is most likely to reside. Understanding the stability of psychological systems has

important theoretical and practical implications. For example, there is a growing interest in

sudden changes in experienced severity of symptoms (Cramer et al., 2016; Cui et al., 2023;

Haslbeck et al., 2022; Olthof et al., 2023; Wichers et al., 2019). This line of work conceptualizes

mental disorders as a stable emergent phase1 of a person-specific mental system embedded in

a specific context. The ball-and-landscape metaphor is often used to illustrate this concept,

where the state of a person's mental system is like a ball on a landscape that fluctuates around

a local minimum but may transition to another minimum under certain conditions, resulting

in a change to a different phase (e.g., from the healthy phase to the depressive phase or the

anxious phase). In this metaphor, the stability of the system is represented by the altitude of

the landscape. A higher position indicates less stability and a tendency to fall, and a lower

1 The term “attractor” is sometimes employed to convey the same idea as the “phase” we used here. However, “attractor”
can be used to refer to a particular point at which the system is most stable, akin to a local minimum on the landscape rather
than a basin of attraction encompassing the local minimum (Sayama, 2015). To prevent any potential confusion, we adhere to
the term “phase” in this article, in line with our previous work (Cui et al., 2023).
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position indicates more stability and a tendency to remain in the same area. If multiple basins

exist on the landscape, indicating there are multiple phases that the system can reside in, the

system can be characterized as exhibiting multistability. It is important to distinguish

multistability from multimodality: multimodality is only a feature of the data distribution,

whereas multistability signifies the existence of distinct phases that the system tends to stay in

a short time, but may occasionally transition between them. Although the multimodality of

data may suggest the presence of multistability in the system, it is not always the case, as we

will elaborate in subsequent sections. Whereas the ball-and-landscape metaphor is

conceptually well recognized and accepted, quantifying the potential landscape function

remains a challenge. Although some recent studies have proposed methods to estimate the

stability landscapes for psychological formal models (Cui et al., 2023), there are currently no

methods available to estimate stability landscapes frommultivariate continuous data, limiting

further progress in this field.

In the current article, we propose a novel nonparametrically method to estimate the

dynamic functions and the generalized potential function of psychological systems from ILD.

The dynamics can be represented with vector fields, and the generalized potential function can

be visualized by potential landscapes. By this method, we aim to provide a quantitative and

rather assumption-free description of the dynamics and the stability of psychological systems.

An R package, fitlandr, was developed to provide an implementation of the method and can be

accessed at the Comprehensive R Archive Network (https://CRAN.R-project.org/package=

fitlandr). The name fitlandr will be used throughout the current article for the whole method

that we are proposing. In the following sections, we will first introduce the currently available

methods for psychological ILD, and describe the similarities and differences with our method.

After that, we describe our method and briefly introduce related algorithms. We will then

demonstrate the method using simulation data and empirical data. With the simulation data,

we examine if our method can recover known multistability from short time series, how much

it is robust under noise, and how much it relies on the dynamical information (i.e., the

information regarding how the current state of the system influences its state at the

subsequent time point) from the data rather than the distributional information. With the

empirical data, we examine if our method can recover multistability suggested by

psychological theories and whether it provides insights regarding the nature of psychological

systems. Finally, we discuss the advantages, disadvantages, and potential applications of this

method. The necessary code for replicating the findings presented in this article can be

obtained from the following URL: https://osf.io/s7dq4/.
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A Survey of CurrentMethods andModels

In this section, we present a survey of commonly used methods and models for analyzing

psychological ILD. We summarize their limitations in capturing complex dynamics and

stability, and highlight the added value of themethod we are proposing.

The vector autoregression (VAR) model is the most widely used approach for multivariate

time series analysis and serves as a foundation for longitudinal network analysis (Bringmann

et al., 2013). In a VAR model, the state of the system from the previous time point, represented

as a vector, is used to predict the state of the system at the next time point through a regression

model. Despite its simplicity, VAR provides a powerful way to gain insights from ILD. Yet, VAR

models assume constant linear interactions of the variables discretely, thus fail to capture

complex features such as nonstationarity and multistability (Haslbeck et al., 2022; Haslbeck &

Ryan, 2022; Olthof et al., 2020).

To overcome this issue, many variants of the original VAR model have been developed,

seeking to capture more complex dynamics in the system. For example, the time-varying VAR

(TV-VAR) model allows for smooth change in the parameters of the VAR model, accounting for

nonstationary behavior in the data (Bringmann et al., 2017; Haslbeck et al., 2021). Threshold-

VAR (De Haan-Rietdijk et al., 2016; Tong & Lim, 1980) and Markov-Switching-VAR (Hamilton,

1989; Haslbeck & Ryan, 2022) are models that apply different regression equations based on a

threshold variable or a latent variable that indicates which phase the system is in. Although

these variants improve upon the VAR model, they do not explicitly model nonlinear dynamics.

More concretely, even though these models allow the linear interaction coefficient to change

nonlinearly over time, they still do not permit the function form to be nonlinear (i.e., the

influence of any variable on itself or other variables is always linear). As a result, the system at

each time point is a linear system, which means that at any given moment, when a higher x

corresponds to a higher y, it follows that an even greater x will consistently result in a

proportionally higher y, without any exceptions. This limits the ability to capture nonlinear

interactions among variables. Moreover, they represent nonstationary and multistable

behaviors with one or more variables (such as the time-varying coefficients in the TV-VAR

model, one or more assessed variables in the Threshold-VAR model, and latent states in the

Markov-Switching-VAR model). These variables can undergo discrete or smooth changes,

making the model undergo transformations, but they are not explanans per se. As a result, the

model does not inherently account for the reasons behind their changes. Last, if the transition

between different phases of the system is the primary focus rather than the specific dynamics,

a hidden Markov model (HMM) can also be used, which assumes that the data come from
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multiple probability distributions (Haslbeck & Ryan, 2022; Visser, 2011). However, in HMM,

only the specific transition probabilities between hidden states are defined, whereas within

each hidden state, the time points are considered independent from each other, lacking any

temporal dependencies. Consequently, HMM primarily focuses on capturing the transition

possibilities between hidden states rather than providing a detailed description of the specific

dynamics.

Another branch of methods for analyzing ILD is based on the drift-diffusion process, in

which the moving trajectory of a system is governed by two types of forces: the drift part,

which represents the deterministic forces, and the diffusion part, which represents the

stochastic forces. The drift-diffusion process is modeled using stochastic differential equations

instead of linear regressions, thus the models based on the drift-diffusion process are

inherently continuous. The Fokker-Planck Equation Model (FPEM) by Tschacher and Haken

(2020) is an example of a simple drift-diffusion model that uses the binned average of the

differences between sample points as the drift term and the variance as the diffusion term. The

method calculates a potential landscape function by integrating the drift term. An advantage

of this model is that the local dynamics and the global multistability are uniformly represented

in one dynamical equation. The multimodality is the property of the system itself, not the

consequence of switching between different systems. This method, however, requires enough

data points in each bin to estimate the mean and the variance reliably, and the integral can

only be calculated in a single dimension, thus the method is only applicable for one-

dimensional systems. Another method based on the drift-diffusion process is the Ornstein-

Uhlenbeck Model (OUM, also known as the DynAffect model, Kuppens et al., 2010; Oravecz et

al., 2011). This model assumes that the drift is proportional to the distance between the current

state of the system and a single point (the “homebase” of the system). The direction of the drift

term always points towards this point. The diffusion term is set as a multidimensional

Gaussian noise. This method can be applied to two or more dimensional systems, but it does

not allow multistability due to its linear form in the drift part. Another related method is the

Continuous-Time VAR (CT-VAR) model (Ryan et al., 2018; Ryan & Hamaker, 2022), which is a

continuous-time extension to VAR models. It assumes linear continuous interactions among

variables, thus the dynamics can also be described by a drift-diffusion process similar to the

OUM, whereas the CT-VAR model is intended to be used for datasets with more variables and

can be represented in a network. However, like the OUM, it assumes linear dynamics, thus

does not show multistabilty. To explain the typical skewed and bimodal distribution in

emotional ILD, Loossens et al. (2020) proposed the Affective Ising Model (AIM), which
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assumes a specific type of the drift function inspired by the Ising model in physics. This model

assumes two subsystems: the positive emotion system and the negative emotion system. Each

element strengthens other elements in the same system, and inhibits the elements in the other

system. The AIM can well represent a specific type of data distribution, namely the V-shaped

distribution in the state space of positive and negative emotions. The model, however, is

limited to a specific set of assumptions about positive and negative emotion systems and does

not generalize to the ILD of other psychological processes.

We summarize the key features of the above-mentioned methods in Table 1. Inspecting

the table, we can see a clear trade-off between the flexibility of the model and the feasibility of

the model estimation. Taking the representation of multistability as an example: models that

specify the number of phases beforehand (such as Threshold-VAR, Markov-Switching-VAR,

HMM, and AIM) can handle more variables and require fewer data points, whereas models

that let the number of phases emerge from the estimation process (such as FPEM) require

more data points and can handle fewer variables. This mostly comes from the methodological

challenges posed by psychological ILD (van de Leemput et al., 2014): Psychological ILD often

include a few dozens to one hundred data points from self-reported questionnaires. Although

this length is large in the field of psychology, it falls short in comparison to other fields that

typically have thousands of data points, and data collected through questionnaires are often

more prone to measurement noise. For example, the animal movement data in ecology used by

Brillinger (2007) has 1,571 data points measured by GPS with a precision in the meter level and

range of kilometers, and the long-term geographical data used by Livina et al. (2010) has 3,000

data points of isotope concentration which could also be measured precisely comparing with

the range of fluctuation. To compare with, ESM datasets often contains around a hundred data

points, with the measurement noise comprising about a quarter of the total variation

(Dejonckheere et al., 2022).
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Nevertheless, in the middle of this trade-off, there is a gap in the existing range of

methods: none of them can effectively represent all types of multistability in a

multidimensional space for psychological ILD. This is where fitlandr comes in. The specifics of

fitlandr will be discussed in depth in the subsequent sections.

The fitlandrMethod

The fitlandr method draws inspiration from the dynamo project (Qiu et al., 2022), which aims

to describe single cell RNA dynamics and stability with vector fields and potential landscapes.

Whereas fitlandr uses similar steps as dynamo, different algorithms and procedures were

implemented to accommodate the characteristics of psychological ILD, which are often shorter,

more prone to noise, have fewer dimensions, and display more homeostatic behavior than

single cell RNA data. The workflow of fitlandr is illustrated in Figure 1, with further

explanations provided in the following subsections. The main characteristics of fitlandr, in

comparison with previous methods, are shown in Table 1.

Figure 1. The workflow of fitlandr.

Step 1: Estimating SystemDynamics

The first step of the method is to estimate the dynamics of the system from raw data. In

fitlandr, we employ the general drift-diffusion form of stochastic differential equations to

describe the dynamics of the system, written as follows1:

1 Note that, although sharing the same mathematical origin, the model used in this context is not directly related to the
drift-diffusion model (DDM) used in cognitive decision modeling (Ratcliff et al., 2016; Ratcliff & McKoon, 2008). DDM
assumes a very specific process of cognitive decision making. In contrast, the method proposed in the current article is not
intended tomodel any decision-making behavior, nor does it have strong assumptions regarding a specific mental process.
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d� = � � d� + � � d�, 1
in which the first term in the right-hand side, � � , represent the deterministic force, and the

second term represents the noise of the system (the diffusion matrix, � = ��� , is more

commonly used). In fitlandr, we use a flexible kernel algorithm, namely the Multivariate

Kernel Estimator (MVKE, Bandi & Moloche, 2018) to estimate the drift-diffusion equation.

Assuming �� (� = 1,2,3, …, �) are � observations of �� in � = 1,2,3, …, �, the kernel estimators

for�(�) and�(�) are given by (Bandi &Moloche, 2018):

�� � = �=1
�−1 � �� − � ��+� − ���

�=1
� � �� − ��

, 2

�� � = �=1
�−1 � �� − � ��+� − �� ��+� − ��

��

�=1
� � �� − ��

, 3

in which� � is a product kernel function, as follows in our implementation:

� � =
1
ℎ�

�=1

�

�
−��
ℎ� , 4

where �� is the �-th element of �, and ℎ is a user-specified parameter controlling the width of

the kernel estimator. Intuitively, MVKE is a weighted average of the dynamics from the data.

The weight of a data point depends on its distance with the evaluation point, � �� − � . The

closer the evaluation point is to a data point, themore similar the dynamics is.

Due to the use of a kernel algorithm, the output cannot be represented as parameter

estimates. Instead, the force of the system in different directions is shown through a vector

field. A vector field plot displays multiple arrows in a grid, representing the direction and

tendency of how the system evolves from a given point. However, it is not as straightforward to

see how variables influence one another. In a VAR model, a positive coefficient of variable �1

on variable �2, �1,2 indicates that a higher value of �1 at time � predicts a higher value of �2 at

time � + 1 . In a vector field, however, the influence of �1 to �2 may not be monotonous. A

higher value of �1 may predict a higher value of �2 at the next time point in a certain range,

but the relationship may be reversed in another range, and the relationship may also depend

on the value of �2 . It is exactly this flexibility that we see as the key advantage of the current

method. Whereas previous time-series methods such as VAR and OUM can also be depicted

with a vector field, they limit the shape of the vector field (see Appendix B1). In the proposed

method, we do not impose a specific form on the drift part. Instead, we use kernel methods to

estimate it in a flexible manner.
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Step 2: Estimating Stability Landscape

After obtaining the dynamic function of the system, we can go one step further to analyze the

stability by constructing the system’s potential landscape. The formal representation of

stability is based on the concept of a potential function, which assumes that the deterministic

force of the system can be represented as the gradient of the potential. In this framework, a

lower potential indicates greater stability, as the system naturally moves towards states with

lower potential. The steeper the slope of the potential, the stronger the system's tendency to

move towards lower potential states. However, because of the mathematical properties of

multivariate functions (as explained in Cui et al., 2021, 2022), constructing a well-defined

potential function from an arbitrary vector field is often impossible. This is because not all the

forces in the vector field can be represented as the gradient of a stability function. Therefore,

we use a generalized potential function defined by Wang et al. (2008). The generalized

potential landscape provides an informative summary of the stability of the states, although it

may not encompass all details of the system’s dynamics. This function is calculated as the

negative logarithm of the steady-state distribution of the system,

� � =− ln��� � , 5
in which � is the generalized potential function, the higher the value of �, the more unstable

the state is; and ��� is the steady-state distribution of the system and estimated through

Monte Carlo simulation in the fitlandr package. The drift-diffusion function obtained from the

previous step, is used to simulate the system from multiple starting points until the

distribution converges. The simlandr package (Cui et al., 2021, 2023) is then used to calculate

and visualize the potential landscape function and to find the position of the local minima and

the saddle point on the potential landscape.

Recover Nonlinear Dynamics and Stability from Simulation Data

In this section, we evaluate the performance of fitlandr using model simulations. We use the

mood system model by van de Leemput et al., (2014, also see Haslbeck & Ryan, 2021) for

illustration. This model is based on a Generalized Lotka-Volterra model with four variables: x1

and x2 represent positive emotions and x3 and x4 represent negative emotions. Interactions

between these variables are captured by the quadric terms ������� ( �, � = 1, 2, 3, 4 ;

corresponding to the four types of emotions), where positive emotions strengthen each other

and weaken negative emotions, and vice versa. These variables also have self-reinforcing

effects represented by ���� ( � = 1, 2, 3, 4) . The model also includes a white noise term,
σ�d�

d�
(� = 1, 2, 3, 4), for each variable.Written together:
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d�� = 1.6 + ���� +
�=1

4

�������� d� + σ�d� (� = 1, 2, 3, 4). 6

We simulate the dataset from this model using the same parameter settings as in

Haslbeck and Ryan (2021), namely � = ��� =

−0.2 0.04 −0.2 −0.2
0.04 −0.2 −0.2 −0.2
−0.2 −0.2 −0.2 0.04
−0.2 −0.2 0.04 −0.2

, and �� =

4.5 � = 1,2,3,4 . This is a four-variable model, for which the full vector field and the potential

landscape in the original state space can only be shown in a four-dimensional state space.

However, with the aforementioned parameter settings, the dynamic equations for �1 and �2

are exactly symmetric, and the same holds for �3 and �4 . As a result, the majority of the

behavior of the system can be understood by examining �1 and �3 . Therefore, we will only

investigate �1 and �3 in the remaining part of this section. The true vector field and potential

landscape of the system are shown in Figure 2.

Figure 2. The true (a) vector field and (b) potential landscape for themodel.

The simulation was performed under five conditions to evaluate whether and when the

bistability of the system can be recovered. The five conditions are: the baseline condition, the

noisy condition, the permutation condition, the long interval condition, and the polarized

interpretation condition. We first focus on explaining the first two conditions. In the baseline

condition, the output time series was down-sampled to every 20 time units, and only the first

200 time points after down-sampling were retained (i.e., the variable values at the � = 0, 20,

40, …, 4000 were used.) This was to ensure that the sampling frequency and the length of the

data are comparable to psychological ILD. The resulting time series is shown in Figure 3a. In
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the noisy condition, we added white noise drawn from� 0, 1 to the baseline data to evaluate

the robustness of the method against noise. We assume this noise comes from the

measurement but not the system itself. Therefore, we first run the simulation as in the baseline

condition, and then add a white noise to the simulation result. The resulting time series is

shown in Figure 3d.

We estimated the vector fields and the potential landscapes for both conditions. The

results are shown in Figure 3b-c and Figure 3e-f, respectively. In the baseline condition, the

estimated vector field (Figure 3b) was largely consistent with the true vector field (Figure 2a)

in terms of direction, but not in magnitude. All the arrows in the vector fields point towards

one of the two regions that the system is stable in. This can be attributed to the limited

information present in the short time series, which did not provide enough detail to perfectly

estimate the movement tendency of the system in the unstable regions. Despite this, the

potential landscape (Figure 3c) accurately captured the bistable nature of the system. There

are clearly two basins on the potential landscape, and the positions of the local minima

(denoted by the white dots) were close to the true positions (Figure 2b). The phases have

similar stability, as indicated by the similar depth of the basins, which aligns with the

characteristics of the true potential landscape as well. In the noisy condition, the addition of

measurement noise disrupted the clear separation between the two phases of the system

(Figure 3d). But the estimated vector field and potential (Figure 3e-f) still retained the general

trends and stability features, despite becoming fuzzier. This indicates fitlandr is robust against

moderate levels of noise. The results for smaller and larger noise levels can be found in

Appendix B2. The results demonstrate when the noise level is too large, fitlandr is not able to

recover the bistability of the system anymore.

Figure 3. The simulated time series, their vector field estimation results, and their landscape

construction results. The first row is the baseline condition; the second row is the noisy

condition; the third row is the permutation condition; the fourth row is the long interval

condition; the fifth row is the polarized interpretation condition. The three columns are the

time series with density plot aside, the vector field estimation result, and the landscape

construction result. In the vector field plots, gray arrows represent the estimated vector field;

the black arrows represent the vector samples from the datasets used for estimation. In the

potential landscape plots, the color at the purple side represents higher stability; the color at

the yellow side represents lower stability; the white dots represent local minimums of the
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phases; when there are two phases on the landscapes, the red dots represent the saddle point

on the path connecting the two local minimums.

At this point, it is tempting to suspect that fitlandr simply reflects the density distribution

of the time series, given that the landscape results are similar to the density distribution of the

raw data, and the density distribution of a system is known to be more robust than its dynamic

features (Haslbeck & Ryan, 2022).We tested this with three other simulation conditions. In the

permutation condition, the data from the baseline condition was randomly shuffled. This

manipulation retains the distribution of the data points but removed the dynamical

information from the data, and we use this condition to test if the method extracts the

dynamical information from data or relies solely on the distributional information. The
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resulting time series is shown in Figure 3g. In the long interval condition, the time series was

down-sampled to every 2,000 time points instead of 20 time points in the baseline condition,

and the length of the data remained the same (i.e., the variable values at the � = 0, 2000,

4000, …, 400000 were used.) This condition was used to assess the impact of having a much

lower sampling frequency compared to the time scale of the changing process of interest. The

resulting time series is shown in Figure 3j. In addition, the polarized interpretation condition

was not simulated using the bistable Generalized Lotka-Volterra model, but a monostable VAR

model specified by:

�'1,�+1
�'3, �+1

= 0.2 0.2
0.2 0.2

�'1,�
�'3, �

+ �, �~� �, 0.5 0.4
0.4 0.5 , 7

and the results were transformedwith a hyperbolic tangent function,

�1,� = tanh �1,�
' ,

�3,� = tanh �3,�
' , 8

to create a bimodal sample distribution. This transformation makes �1 and �3 have a bimodal

distribution (Figure 3m), so that it mimics a scenario where the psychological process is not

inherently bistable, but the participants tend to use both extremes of the scale instead of the

middle part, which creates bimodality in the data. In empirical studies, this can be induced, for

example, when a 0-100 slider scale is used and the slider is initialized at 50. In that case,

participants may be more likely to move the slider away from 50, thereby inducing bimodality

in the data (Haslbeck et al., 2023).

For the permutation condition, the estimated vector field and potential function are

shown in Figure 3h-i. It is clear that bistability cannot be recovered in this case. Both the vector

field and the landscape showed a clear tendency for the system to move to the middle of the

two distribution modes. With the time order randomized, it is equally likely for the system to

remain in a stable phase or transition to another stable phase, causing the algorithm to

identify the middle as the only stable phase of the system. We can also observe similar

behaviors in the long interval condition and the polarized interpretation condition, in which

the system also quickly transitioned between two distribution modes and the middle was

recognized by the algorithm as the only stable phase of the system (Figure 3k-l, Figure 3n-o).

These similar behaviors have different origins. In the permutation condition, the time order

was shuffled, removing the time dependency from the data. In the long interval condition, the

system is actually bistable, but due to the large measurement interval relative to the dynamics

of interest, the dataset hardly retains dynamic information about the bistability of the system.

In the polarized interpretation condition, the system is actually monostable, but the hyperbolic
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tangent transformation made the data points bimodal. In this case, the monostable results

from fitlandr correctly recovered themonostable nature of the system.

To summarize, our results with simulated data demonstrate that fitlandr can effectively

capture the bistable nature of a system, displaying robustness in the presence of moderate

noise. The results indicate that the method primarily extracts dynamic information from the

data rather than simply reflecting its distributional characteristics. If the dataset lacks

sufficient dynamic information about the bistability of the system, fitlandr is unlikely to

produce bistable outputs, even if the data have a bimodal distribution.

Describe Nonlinear Dynamics and Stability from Empirical Data

After investigations with simulation models in the previous section, we now apply the fitlandr

method to two empirical datasets. It is important to note that these empirical applications

serve only as illustrations of the method. The selection of participants and variables was

arbitrary and not pre-registered. Hence, results shown in this section should not be regarded

as empirical claims about the behavior of these clinical groups.

The first dataset is from the Leuven BPD study (Houben et al., 2016) and was obtained

from the EMOTE database (Kalokerinos et al., in preparation) with the data request ID

32YDI3R54M. This dataset involves participants with a diagnosis of bipolar personality

disorder (BPD) and a healthy control group reporting their emotional states 10 times a day

over eight consecutive days. The details of the data collection procedure are described in

Houben et al. (2016). We chose this dataset because patients with BPD have “unstable

emotional experiences and frequent mood changes” (DSM-5TM, American Psychiatric

Association, 2022). Therefore, we expect that their mood system may be multistable. In the

current study, the time series data from the participant with a BPD diagnosis and with the

longest record was used to estimate the vector field and potential landscape. The time series of

this participant (P1) contained 4 missing values and 75 valid points. Two variables, the self-

rated emotional arousal and valence, were used in this study. Both variables were measured

together from an emotional grid scale and took integer values between 0 and 91. The mean

values of emotional arousal and variance of this participant were 25.09 (SD = 23.05) and 44.81

(SD = 33.86), respectively. Both variables are bimodally distributed, as shown in Figure 4a.

The second dataset used in the current study is from Delignières et al. (2004) and is freely

available online.2 In this study, four participants filled in the Physical-Self Inventory (PSI-6,

Ninot et al., 2001) twice a day for 512 consecutive days, yielding 1024 time points without

2 The dataset is available at https://didierdelignieresblog.wordpress.com/recherche/databank/.



Unlocking Nonlinear Dynamics andMultistability from Intensive Longitudinal Data

91

4

missing values. We used the data from the second participant (P2) due to its clear bistable

patterns (as shown in Figure 4d). Two items from the scale, perceived fitness and physical self-

worth, were used in this study. The mean values of perceived fitness and physical self-worth

for this participant were 5.88 (SD = 0.94) and 6.28 (SD = 0.79), respectively.

Figure 4. The empirical time series, their vector field estimation results, and their landscape

construction results. The first row corresponds to the data from P1 (Houben et al., 2016); the

second row corresponds to the data from P2 (Delignières et al., 2004). The three columns are

the time series with density plot aside, the vector field estimation result, and the landscape

construction result. The meaning of the symbols in the vector fields and the potential

landscapes is the same as in Figure 3.

We estimated the vector fields and the potential landscapes for both participants, and the

results are presented in Figure 4. Although both variables of P1 have a bimodal distribution

(Figure 4a), the vector field and the potential landscape (Figure 4b-c) both show that the

system has the tendency to move to the only local minimum (denoted by the white dot on the

landscape) from any starting point. Thus, only one phase was identified for the system, with a

moderate level of emotional valance and arousal, which means that the dataset does not

contain enough bistability information about the system. As shown in the simulation study, it

is possible that the system is monostable but has a bimodal data distribution due to the

reaction tendency of the participant or that the system is bistable but the measurement

method did not capture enough information to reveal the bistability (e.g., due to inadequate
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sampling frequency or measurement precision). Notably, the vector field of P1 showed a

rotation tendency. The arrows from the low arousal, low valance region, and the high arousal,

high valance region both tend to first move to the low arousal, high valance region before

moving to the local minimum. This paves the way for future studies to investigate whether this

holds true for the emotion regulation of this particular participant. From the time series of P2,

both the vector field and the potential landscape indicate that there are two phases in the

system (Figure 4e-f), with positions close to the two modes of the data distribution. This

means that the participant’s self-esteem regarding physical strength is likely to have bistability.

The centers of the phases, which are the local minima, are denoted by the white dots on the

landscape. One phase is more stable, characterized by a low level of physical self-worth and

perceived fitness, and the other phase is more unstable, with a higher level of physical self-

worth and perceived fitness. Because the length of the two time series differs notably, we also

estimated vector fields and landscapes with a small section of the time series from P2 as well as

a down-sampled time series which is more sparse than the original one. The resulting vector

field and potential landscape (Appendix B3) showed similar features as for the original time

series (Figure 4e-f).

Discussion

In the current article, we introduce fitlandr, a novel method for estimating the dynamic

function and the generalized potential function of psychological systems using ILD. The

method comprises two steps. The first step involves estimating the drift-diffusion using the

multivariate kernel estimation algorithm (MVKE, Bandi & Moloche, 2018). Compared with

previous methods, MVKE is a non-parametric, rather assumption-free algorithm, which offers

adequate flexibility for recovering complex dynamics from ILD. The second step of the method

entails estimating the generalized potential function from the drift-diffusion function, based

on the definition by Wang et al. (2008). This definition is grounded on the steady-state

distribution of the system, which can be estimated through Monte-Carlo simulation of the

drift-diffusion function. We evaluated the performance of fitlandr using both simulation and

empirical data. Results from simulation data showed that fitlandr is capable of recovering

bistability of the system from relatively short time series (200 sample points) and is robust

against moderate levels of noise. We also showed three conditions in which the datasets had a

bimodal distribution but did not contain information of bistable dynamics. In those cases,

fitlandr produces monostable results. Our analysis of two empirical datasets demonstrated

that fitlandr generates meaningful results about the stability of the system. Although the two
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datasets displayed bimodality in their variable distributions, only one of the outputs from

fitlandr showed bistability.

The results of fitlandr highlight the distinction between bimodality and bistability.

Whereas bimodality describes the data distribution, bistability refers to the stability of the

system: if a system is bistable, and if we know the system is currently in its first phase, then it is

likely that the system will still stay around the same phase in the near future. In the simulation

study, we showed three cases where the bimodality in the data did not correspond to the

bistability of the system. In the permutation condition and the long interval condition,

although the data points were generated from a bistable system, there was almost no

dynamical information in the data that showed the bistability. As a result, the algorithm was

unable to determine whether the data are from a genuine bistable system, or randomly drawn

from a bimodal distribution. When the data points are shuffled (in the permutation condition)

or sampling frequency is much slower than the average time that the system transitions

between two stable phases, it is equally likely that the system stays around its previous phase

or moves to a new phase. Therefore, it is not possible to tell if bistability exists in the system.

This can also be found in the last condition, the polarized interpretation condition. In this

condition, the system is actually monostable, and the bimodal data distribution was a result of

a transformation. When the underlying data generation process is unknown, those three

conditions are indistinguishable to the algorithm, and hence, the algorithm produces similar

monostable results. Here we also note an important difference between the characteristics of

the underlying system and the information contained in the data. If the data quality is not

good enough, in the sense that it does not contain enough information about the true

characteristics of the system, no matter how good an algorithm is, it will always lead to faulty

outputs.

The same also applies to the empirical analysis, in which we used two N = 1 datasets to

estimate the dynamical function and the potential landscape. The formal theories about which

psychological processes involve bistability is sparse (Fried, 2020; Robinaugh et al., 2021).

Based on verbal theories, one may expect the emotional system of a patient with BPD (P1) to be

bistable, whereas there may not be an explicit theory suggesting that the physical self-concept

of a person (P2) is bistable. However, we found the opposite in the results by fitlandr. There is

only one phase for P1, but two phases for P2. The dataset of P1 did show a bimodal distribution,

but we did not recover bistability of the system. As shown in the simulation study, multiple

reasons can lead to this result. First, the person may have two qualitatively different phases,

one with high arousal and low valence emotion and one with low arousal and high valence
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emotion, but the sample intervals were much larger than the average time of switching

between these two phases (e.g., the average time of switching between the two affective

phases may be twenty minutes, but the assessment is conducted every two hours). As a result,

the data obtained were too coarse-grained to capture the switches between these phases

effectively. Second, it may be that the person actually has only one psychological phase, but the

person’s responses are influenced by a polarized tendency, which means that the person tends

to use the extremes of the scale instead of the middle of the scale. Without additional

information, it is impossible to distinguish between these two explanations. Moreover, for

other participants in the same group of those studies, we did not find similar results as P1 or P2

(Appendix B4), which suggests that the number and position of stable phases are highly

idiographic.

The kernel method used in fitlandr enables the description of various nonlinear dynamics

of psychological systems. Although the fitting procedure is rather assumption-free, there are

underlying assumptions in the drift-diffusion function. The drift part and the diffusion part are

only the functions of the state of the system, � . This implies that during the data collection

process, only the state of the system changes, but the dynamic function of the system remains

unchanged. This assumption may not be correct when for instance a clinical intervention is

administrated during data collection, as this could alter the way that the variables interact

with each other (e.g., a cognitive restructuring may change how physical arousal influence

perceived threat, Robinaugh et al., 2019). Future development of this method may involve a

moving window approach to allow the dynamics of the system to slowly change over time, as

in the TV-VAR model (Bringmann et al., 2017; Haslbeck et al., 2021). Another assumption of the

drift-diffusion function is the Markov property, which means that the evolution of the system

only depends on the current state of the system and not on historical states. As a result, it

cannot directly predict periodic changes, such as those in cyclothymic disorder (Akiskal &

Pinto, 1999; American Psychiatric Association, 2022a). Including previous time points in the

dynamic function may help to remedy this issue, as in phase space reconstruction methods

(Marwan et al., 2007; Takens, 1981). MVKE also assumes equal distance between observations,

which is often not true. Future statistical development of the method extends the method to

handle different time intervals, as in the CT-VAR model. However, it is unclear if the physical

time interval should be used in the modeling. Physically, 8 hours from 11 PM to 7 AM and 8

hours from 9 AM to 5 PM may be equal, but the psychological changes during those two time

slots are not likely to be the same. Further research is needed to determine the appropriate

time scale for measuring psychological variables.
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We used around 200 time points in the current article, which is feasible for an ESM study,

but is not always easy to conduct. Here, we provide three general principles to guide the data

collection for using the fitlandr method. First, the period of data collection should be long

enough to observe different phases of the system. For a patient with a bipolar disorder, for

example, data points from both the depressive phase and the manic phase should be collected

to describe the possible bistability of the system. Second, as fitlandr assumes that the

dynamics and stability of the system does not change over time, the data collection period

should not be too long that it contains significant developmental changes or treatment

changes. Alternatively, if the time series does contain significant changes of the system

dynamics, it may be better to use the fitlandr method in moving windows instead of applying

it to the entire time series. Third, the measurement frequency should match the change rate of

the phenomena, so that there is sufficient information about the stability of the system in the

dataset. It is difficult to provide guidance about exactly howmany data points are sufficient to

produce stable results, because the results shown in the current study may not be applicable to

all real-life scenarios, and the dynamic properties of different people and different variables

can differ in so many ways. Future work may investigate different specific scenarios and

provide estimations of the number of data points required for this method.

Currently, fitlandr can only be applied to a single participant dataset. It might be

appealing to develop multilevel extensions to fitlandr, as in the Dynamic Structural Equation

Models (DSEM, Hamaker et al., 2018). It is technically possible to build a multilevel model for

nonparametric methods (e.g., Li et al., 2006). However, as the dynamic functions and potential

landscapes can be very different within the same group of people (Appendix B4), we doubt if

aggregating the landscapes will yield meaningful results. It is good to have amethod that helps

to generalize the results to a larger group, but this is only meaningful to the extent that the

result is generalizable. Therefore, we highly suggest the current method to be used as an N = 1

method unless there is sufficient evidence suggesting the dynamic functions or stability

landscapes at the group level are similar to the landscapes of the individuals that make up the

group (Fisher et al., 2018; Hamaker, 2023; Hekler et al., 2019; Molenaar, 2004; Olthof et al.,

2023).

Conclusion

We introduce the fitlandr method in the current article to flexibly estimate the dynamical

drift-diffusion function and generalized potential landscape function for psychological

systems. This approach uses MVKE, a nonlinear kernel method, to estimate the drift-diffusion

function, employs Monte Carlo simulation to determine the steady-state distribution, and uses
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the simlandr package to calculate the generalized potential landscape function. Our method is

effective in detecting bistability from both simulation and empirical data, is robust against

noise, and relies on the dynamic information from the data instead of the distributional

information.
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Abstract

The network theory of psychopathology proposes that mental disorders can be represented as

networks of interacting psychiatric symptoms. These direct symptom-symptom interactions

can create a vicious cycle of symptom activation, pushing the network to a self-sustaining

dysfunctional phase of psychopathology: a mental disorder. Symptom network models can be

estimated from empirical data through statistical models. Although simulation studies have

established a relation between the structure of these symptom network models and the

probability they end up in a self-sustaining dysfunctional phase, the general stability of the

system is left implicit. The general stability includes both the stability of the dysfunctional

phase and the stability of the healthy phase. In this paper, we present a novel method to

quantify the stability landscapes of network models through stability landscapes. Our method

is based on the Hamiltonian of the microstates of Ising models and can be used to show the

stability of estimated Ising network models. Compared to simulation-based methods, our

approach is computationally more efficient and quantifies the stability of all possible system

states. Furthermore, we propose a set of stability metrics to quantify the stability of the healthy

and dysfunctional phases and a bootstrapping method for range estimation of the stability

metrics. To demonstrate the method’s utility, we apply it to an empirical data set and show

how it can be used to compare the stability of phases between groups. The presented method

is implemented in a freely available R package, Isinglandr.
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Introduction

Over the past decades, there has been a growing interest in understanding psychopathology

through the lens of network theory. This approach conceptualizes mental disorders not as

isolated symptoms with a common underlying cause but as complex systems where symptoms

interact with and influence one another (Cramer et al., 2016; Olthof, Hasselman, Oude

Maatman, et al., 2023). In a network model of psychopathology, the analysis takes place at the

level of interacting symptoms, where each symptom is represented as a node, and the

connections (called edges) between nodes represent the relationships between symptoms

(Borsboom, 2017). The interactions between symptoms are crucial for understanding the

overall behavior of the system. For example, sleeping problems can lead to worrying thoughts,

which in turn can increase fatigue and depressed mood (Cramer et al., 2016).

Individuals whose symptom networks have strong connections between symptoms may

be more vulnerable to developing a mental disorder, as the activation of one symptom can

trigger a cascade of others. Conversely, those with weaker connections may be more resilient.

Often the system is organized such that certain phases (i.e., qualitatively different patterns of

behavior) emerge from the system, such as the healthy phase and the depressive phase (Cui et

al., 2023). The stability of these phases can vary, explaining why some individuals show

resilience while others experience persistent mental disorders (Cramer et al., 2016; Olthof et al.,

2020).

One way to advance the understanding of psychopathology from a network perspective is

to estimate statistical network models from empirical data. These models reveal the

conditional associations between symptoms, controlling for all other variables (Borsboom et

al., 2021; Bringmann et al., 2022; Epskamp et al., 2018). However, while these models provide

insights into the relationships between symptoms, they do not directly indicate the stability of

different system phases – meaning we cannot easily determine whether a group of people is

more likely to be in a healthy or depressive phase based solely on their network structure.

Knowing the stability of different phases is crucial both for clinical practice and for better

theorizing mental disorders from the network theory, whereas the methods to depict the

stability of phases from networkmodels are still sparse.

To address this gap, researchers have used simulation-based approaches to predict the

likely phase of a symptom network. For instance, studies have examined whether networks

with strong associations among symptoms are more likely to result in a depressive phase

(Cramer et al., 2016; Lunansky et al., 2024). However, these simulations often provide only a
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rough estimate and do not capture the overall stability of the entire system across different

starting points. Moreover, the accuracy of these predictions can be influenced by random noise

and other factors, making it challenging to draw definitive conclusions.

A useful way to conceptualize the stability of a symptom network is through the

metaphor of a stability landscape. Imagine a ball rolling on an uneven landscape, where lower

positions represent more stable states. The shape of the landscape determines where the ball

(or system) is likely to settle. In this analogy, different basins on the landscape correspond to

different psychological phases, such as the healthy phase and the depressed phase (Hayes &

Andrews, 2020). The stability of these phases determines the direction in which the system is

likely to evolve. For example, individuals characterized by a stability landscape with a deep

and steep basin for the depressive phase are more likely to develop and remain in a depression,

while those with a shallow basin for the healthy phase may bemore resilient.

While the stability landscape metaphor has been frequently used, it has not been fully

computed from estimated psychological networks. Recently, a method was proposed to

calculate the stability landscape of formal dynamical models (Cui et al., 2023). In this paper,

we will use those insights to introduce a novel method to compute the full stability landscape

from networks estimated from cross-sectional data. This method allows us to infer the

population-level stability of network states. Most network studies to date use cross-sectional

data (Bringmann et al., 2022; Epskamp et al., 2018), however, efforts to estimate person-

specific models based on multivariate timeseries data are pursued by many authors

(Bringmann, 2021; Hulsmans et al., 2024; Mansueto et al., 2023; Olthof, Hasselman, Aas, et al.,

2023; A. G. C. Wright & Woods, 2020). To draw inferences on the individual level we would

need to compute stability landscapes from longitudinal individual data. However, the methods

to estimate non-linear networks from such data are still undeveloped, making it currently

infeasible to compute individual landscapes. Thus in this paper, as the first step, we focus on

cross-sectional data and stability landscapes for the group level.

The paper is structured as follows: First, we introduce the concept of formal stability

landscapes. Next, we explain how stability landscapes can be calculated from cross-sectional

Ising network model, which is particularly well-suited for demonstrating non-linear dynamics

and bistability (van Borkulo et al., 2014). We also propose a set of metrics to quantify phase

stability, made available through the R-package Isinglandr, which can be applied to any

psychological Ising network. Finally, we provide an empirical illustration of how stability

landscapes can be used to compare different groups and discuss the main contributions and

limitations of our method.
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Formalizing Stability Landscapes for Psychological Networks

Currently, there are numerous network psychometric models that can be applied to

psychological systems to analyze the relationships among variables. The choice of model

depends on the type of data being used. For instance, the Gaussian Graphical Model (GGM) is

used for cross-sectional, continuous data, the Vector Autoregression model (VAR) is used for

longitudinal, continuous data, and the Ising network model is used for cross-sectional, binary

data. GGM and VAR are both linear models and cannot represent bistable systems (Haslbeck et

al., 2022). However, bistability is often assumed in theoretical formulations of

psychopathology (Hayes & Andrews, 2020; Olthof, Hasselman, Oude Maatman, et al., 2023;

Scheffer et al., 2018) and observed in clinical settings (Helmich et al., 2020; Miller, 2004; Tang

& DeRubeis, 1999). The Ising network model, although not as widely used, is capable of

showing the bistability of a system. Therefore, in this article, we use the Ising network model

for illustration purposes, as in Cramer et al. (2016) and Lunansky et al. (2024).

In an Ising network, the system state is represented by the activation state of each node,

denoted as � = �1, �2, . . . , ��
�, where �� represents the activation state of the �-th node, with

1 indicating an active state and 0 indicating an inactive state. In the context of psychological

networks, active and inactive states correspond to the presence or absence of symptoms,

respectively. The Ising network model consists of two types of parameters (van Borkulo et al.,

2014): node thresholds and edge weights. The threshold of a node reflects its inherent

tendency for activation. When all other nodes are in the same state, increasing the threshold of

a node makes it less likely to be activated. Edge weights represent the strength of the

association between two nodes. The meaning of the edge weight varies depending on the

representation of the node states (Haslbeck, Epskamp, et al., 2021). In the current article, we

adopt the standard representation used in most psychological literature, where a higher edge

weight ��,� between node � and � indicates a higher probability that both nodes will be

activated (�� = �� = 1) relative to all other possible node states (i.e., only one node is activated

or neither node is activated). Therefore, decreasing the thresholds of nodes and increasing the

edge weight of nodes makes it more likely that more nodes are activated.

The probability that a node is active, given the active states of all other nodes and the

network parameters, can be calculated using the following formula (van Borkulo et al., 2014):

� �� = 1|��, � = 1,2, …, � − 1, � + 1, …, � =
1

1 + �−� ��+ �=1,�≠�
� ��,�� ��

, 1
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where �� is the threshold for the �-th node, ��,� is the edge weight between the �-th and �-th

nodes (��,� = 0 ), and � represents the randomness of the system (typically set to 1). The

thresholds for all nodes, denoted by � = �1, �2, . . . , ��
� , and the edge weights for each

pair of nodes, denoted by � =
�1,1 ⋯ �1,�

⋮ ⋱ ⋮
��,1 ⋯ ��,�

, can be estimated using logistic regressions

(van Borkulo et al., 2014). Together, these parameters fully describe an Ising network.

To formalize the stability landscape for psychological networks, draw upon the concept of

the stability landscape from physics, which represents the potential energy in each possible

state, and themovement tendency of the system is along the gradient of the landscape1:

d� �
d�

=−
d� �

d�
, 2

in which � is the state of the system, d�/d� represent the speed of movement for the system,

� � is the potential energy for a given state � , and d� � /d� is how the potential energy

increase or decrease along �, representing the steepness of the landscape. Intuitively speaking,

this means the state of the system tends to go down to a lower place of the landscape, and

when the landscape is steeper, it also moves faster. This is exactly what we mean by the ball-

and-landscape analogy. Therefore, to search for a landscape definition for networks, we need

to have a variable x to summarize the state of the system, as well as a function � � to

represent the stability of the system in a given state.

For Ising networks, there is already an intrinsic energy measure for each possible

activation state, namely, the Hamiltonian energy (Ising, 1925; also see Brusco et al., 2021, for

theoretical discussions in the psychological literature). For a state of the network, � , the

Hamiltonian,�, is given by:

� � =−
�=1

�−1

�=�+1

�

��,��� ���� −
�

��� �� =−
1
2 ���� − ���, 3

The probability that the system is in a state a is given by:

� � ∝ �−�� � . 4

Can we use � � to construct the stability landscape of the system? While theoretically

possible, it is not practical due to the vast number of possible states (2�), making it difficult to

comprehensively list the Hamiltonian energy of each. However, in the case of psychopathology,

the number of symptoms is often used as an indicator of the severity of the psychopathology,

1Under zero-inertia condition; the constant coefficient is omitted.
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especially for diagnostic purposes (American Psychiatric Association, 2022). Therefore, as a

solution to the vast number of possible states in the network model we opt to use the number

of active nodes,

� =
�=1

​
��� , 5

instead of the vector � as the representation of the system state. To clarify, in the remaining

part of this article, we only use the term state for � (sometimes also referred to asmacrostate in

the literature), in contrast to the states represented by � as microstates (Dalege et al., 2018).

Note that the state of the system represented by � is a meaningful abstraction of the

microstates only when the nodes are similar enough so that it is reasonable to calculate the

number of active nodes. If the nodes have diverse meanings, such as having both positive and

negative values, then the summation of the nodes may not be appropriate.

One state of the network may be generated by many potential microstate configurations.

For example, if there are five nodes in a network, then there are C5
2 = 10 possible microstates

belonging to the state that two nodes are active (see Figure 1 for several examples)2. To define

the potential function of a state, we need to effectively summarize the information from its

microstates. Here we introduce the generalized potential function by Wang et al. (2008; see

also Cui et al., 2023). Wang’s landscape is defined by the steady-state distribution of the

system, �SS , which is a distribution of systems that does not change over time. If a large

number of copies of an Ising network evolve for a long period of time then ultimately, the

distribution of the number of active nodes � will converge to �SS � . Wang’s landscape

function is defined as:

� � =− ln�SS � . 6

At first glance, this definition of stability landscapes appears circular and equivalent to

Equation 4. However, Equation 6 is more general because it can be used for other variables that

represent the state of the system (here, the state � instead of the microstate of the system �)

while still providingmeaningful results. For Ising networks, the steady-state distribution is the

same as defined by Equation 43. Hence, we can use Equation 4 to calculate the steady-state

2 The number of microstates belonging to a state is termed as themultiplicity of the state.
3 Strictly speaking, it is the other way around. The Ising network model itself does not specify how the system evolves

over time. Therefore, the steady-state distribution of common simulation algorithms for Ising systems all converge to the
possibility distribution defined by Equation 4 (e.g., the Glauber dynamics, Glauber, 1963).
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distribution of the system analytically, without running simulations. Combining Equations 4-

6, we define the generalized stability landscape for the state variable � as follows4:

� � =− ln �SS � =− ln
��, ��

=��

� ��� =− ln
��, ��

=��

�−β� ��� , 7

where� � is defined by Equation 3.

We developed Isinglandr, an R package that implements the methods presented in this

article and produces the results reported here. The package is available from the

Comprehensive R Archive Network (CRAN) at https://cran.r-project.org/package=Isinglandr,

and the code used to generate the results is available on the Open Science Framework (OSF)

repository at https://osf.io/y3kju/.

Figure 1. Diagram of the relationship between the network structure, the microstate and the

state of the system, and the stability landscape. The network structure is arbitrarily chosen for

illustration. Red nodes represent active nodes and gray nodes represent inactive nodes. The

thickness of the edges represents the strength of the connection. See Equation 3.

4 Constants are omitted for brevity.
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Calculating the Stability Landscape of Depression

In this section, we show how variations in the symptom network structure lead to different

stability landscapes. This illustrates the relationship between the symptom network structures

of the cross-sectional Ising network and the stability landscapes. Building on previous studies,

we systematically adjust the parameters of an estimated cross-sectional baseline Ising network

to demonstrate how the stability landscape changes with different network structures

(Lunansky et al., 2024).

Estimating the BaselineModel

The baseline network is estimated from data from the Virginia Adult Twin Study of Psychiatric

and Substance Use Disorders (VATSPSUD; Kendler, Kenneth S. & Prescott, Carol A., 1999). The

data contain binary data on the presence/absence of nine depression symptoms from 8973

twins from the Mid-Atlantic Twin Registry (see Appendix C for a description of all nine

depression symptoms). We received the estimated Ising network parameters from these data,

which were estimated with the IsingFit package in R (van Borkulo et al., 2014; van Borkulo &

Epskamp, 2023)

The stability landscape of the baseline networks is shown in Figure 2. The x-axis

represents the number of active nodes (i.e., the system’s state), and the y-axis represents the

generalized potential function of each state. Higher potential values indicate less stability for

that state, on average within the sample. The potential function has two local minima at � = 0

and � = 6, indicating two phases: the healthy phase (fewer active symptoms, � = 0 to � = 5)

and the depressive phase (more active symptoms, � = 5 to � = 9). The lower potential at � = 0

suggests that the healthy phase is more stable than the depressive phase, meaning that,

although the system can reside in the depressive phase, it is likely to transition back to the

healthy phase.

Stability Landscapes of Varying SymptomNetwork Structures

Alternative network structures were created by multiplying the baseline model’s connectivity

and threshold parameters by constants (0.8, 1, or 1.2), allowing us to simulate increases,

decreases, or no changes to these values. Figure 3 shows the resulting stability landscapes for

these different parameter configurations. The center panel shows the stability landscape when

both the threshold parameters and overall connectivity parameters are unchanged (multiplied

by 1), matching the baseline stability landscape in Figure 2.
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Figure 2. The landscape of the baseline network.

Overall, we observe that weaker connectivity (multiplied by 0.8) and stronger thresholds

(multiplied by 1.2) lead to fewer activated nodes and a more stable healthy phase. This is

evident in the lower-left panel, where the stability landscape shows only one phase with a

local minimum at � = 0 , indicating that the corresponding network tends toward having

fewer active symptoms. Conversely, increased connectivity (multiplied by 1.2) and weaker

thresholds (multiplied by 0.8) result in more activated symptoms, enhancing the stability of

the depressive phase. This scenario is illustrated in the upper-right panel, where the depressive

phase becomesmore stable, with a local minimum at � = 9.

When changes in connectivity and threshold values offset each other, the effects on the

stability landscape may cancel out, as shown in the upper-left and lower-right panels, where

the stability landscapes remain similar to the baseline.

For readers interested in further exploring how parameter changes influence system

stability, the Isinglandr package’s Shiny app (Isinglandr::shiny_Isingland_MDD()) allows for

interactive parameter adjustments and visualizations.
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Figure 3. The landscapes of variations of the baseline network structure. Overall connectivity

and threshold parameters of the baseline network are systematically multiplied with 0.8, 1, or

1.2, and the panels show the resulting stability landscapes.

Stability IndicatorMetrics

To better interpret the stability landscapes, we propose a set of metrics to quantify the stability

of the healthy and depressive phases for different network structures. The stability landscape

provides a quantitative representation of the stability of the network states, serving as a basis

for describing the relative stability of these phases. Previous studies have suggested using

barrier height as a relative stability measure of psychological phases (Cui et al., 2023), but this

metric is undefined when there is only one stable phase in the landscape, and it does not

account for the clinical significance of the number of symptoms.

To address these limitations, we use the clinical cutoff of depression (in this example, five

active symptoms out of nine nodes as in DSM-5-tr, American Psychiatric Association, 2022) to

demarcate the healthy and depressive phases on the stability landscape. Specifically, the

stability of the healthy phase is calculated based on the left portion of the potential function

(states with fewer than five active symptoms), and the stability of the depressive phase is

calculated from the right portion (five or more active symptoms).
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Within the left portion, the difference between the leftmost local minimum and the

maximum value to the right of that local minimum is used as the stability of the healthy phase,

and the stability of the depressive phase is defined symmetrically. This approach ensures

consistency with clinical definitions of depressive diagnosis and severity. The resulting

stability metrics are shown in Figure 4 and Figure 5. The figures illustrate how different

parameterizations affect the stability of each phase, with the healthy phase becoming less

stable and the depressive phase more stable as network connectivity increases and thresholds

decrease.

Figure 4. Stability metrics for the baseline network. The red lines indicate the range of the

landscape function used for calculating the stability of the healthy phase, and the blue lines

indicate the range of the landscape function used for calculating the stability of the depressive

phase. The vertical lines represent the difference in the potential function � between two

reference points. The red and blue numbers are the values of the stability metrics for the

healthy and depressive phases, respectively.

To capture the overall stability of both phases, we calculate the stability difference by

subtracting the stability metric for the depressive phase from that of the healthy phase. A

positive stability difference indicates that the healthy phase is more stable than the depressive

phase, with a larger absolute value reflecting a greater relative stability of the healthy phase. In

contrast, a negative stability difference suggests that the depressive phase is more stable, with

larger values indicating a stronger tendency in the sample towards the depressive phase. The
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stability differences for all the landscapes of variations of the baseline network structure are

shown in Table 1.

Figure 5. Stability metrics for the landscapes of variations of the baseline network structure.

The red lines indicate the range of the landscape function used for calculating the stability of

the healthy phase, and the blue lines indicate the range of the landscape function used for

calculating the stability of the depressive phase. The vertical lines represent the difference in

the potential function � between two reference points. The red and blue numbers are the

values of the stability metrics for the healthy and depressive phases, respectively.

Bootstrapping for Stability Metric Uncertainty. For empirical datasets, we can also

calculate the uncertainty of the stability metrics with bootstrapping. The bootstrapping

method has been widely used in various psychometric contexts for estimating the uncertainty

of parameters (e.g., Epskamp et al., 2018; Mallinckrodt et al., 2006; D. B. Wright et al., 2011). It

resamples participants with replacement from the original dataset many times, estimates the

parameters from the resampled datasets, and use those parameter values to obtain the range

estimation of the parameter. Compared with parametric methods, the bootstrapping method
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does not require specific knowledge about the parameter distribution, thus is suitable for the

stability metrics. The resampling process should be operated from the original dataset instead

of the network parameters. Therefore, we will only explain the method here, and leave

concrete examples for the next section, where the original dataset used for network estimation

is available.

Table 1. Stability differences for the landscapes of variations of the baseline network structure.

Higher values indicate that the healthy phase is more stable compared with the depressive

phase.

Multipliers to thresholds Multipliers to connectivity weights Stability difference

0.80 0.80 1.31

0.80 1.00 -0.88

0.80 1.20 -4.56

1.00 0.80 3.73

1.00 1.00 2.58

1.00 1.20 -0.08

1.20 0.80 6.10

1.20 1.00 4.95

1.20 1.20 3.79

In the Isinglandr package, we use the boot (Davison & Hinkley, 1997) and boot.pval (Thulin,

2023) packages to estimate the standard error, confidence interval, p-values, as well as the

significance of stability metrics. For the stability difference between the two phases and the

group comparison of the stability differences, we apply the bias-corrected and accelerated

(BCa) method as the bootstrap distribution of the stability difference is often skewed. Previous

research has shown that the BCa method performs the best in such cases (Puth et al., 2015).

The stability metrics of a single phase are often highly zero-inflated, which can lead to errors or

unrealistic estimations. Therefore, we use the percentile method for the stability of a single

phase. Note that the percentile method is less accurate than the BCa method (Puth et al., 2015).

Thus, the range estimates for the stability of a single phase should be interpreted with caution.

Using Stability Landscapes to Compare Groups

Network analysis is a powerful tool that can provide an overview of the specific interactions

between variables in a population of interest, making it highly suitable for comparisons

between groups (e.g., males and females; Burger et al., 2023). Network comparison offers a

comprehensive way to gain insight into group differences, such as whether specific edges
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between nodes vary across populations (e.g., gender differences in psychopathology networks,

Kendler et al., 2022, or differences in stress disorder networks between young adults and

adolescents, Sun & Zhou, 2023). In the context of psychopathology, group-level network

comparisons have been used to understand whether different groups, based on, for example,

age or gender, may need different clinical treatments (Lee & Hu, 2022). In this section, we

demonstrate how stability landscapes can be used for group-level network comparisons with

an empirical illustration, and we explain how this approach differs from a widely used Network

Comparison Test (NCT, van Borkulo et al., 2022).

The NCT is a statistical test that compares network structures between groups using

resampling-based permutation (van Borkulo et al., 2022). The test checks for significant

differences in the (1) overall network structure, (2) global connectivity of the networks, and, if

global differences are detected, (3) differences in strength between specific edges. The test is

implemented in the software package NetworkComparisonTest (van Borkulo et al., 2022) within

the R-environment. The test can be used for various network models, including the Ising

networkmodel.

Empirical Illustration

Here, we give an empirical illustration in which we compare psychopathology symptom

networks between individuals with low and normal to high resilience. We show how to

compare the stability landscapes and compute the stability difference between the groups, in

addition to applying the Network Comparison Test (van Borkulo et al., 2022).

Methods

Data. The data contains assessments of coronavirus anxiety symptoms using the Coronavirus

Pandemic Anxiety Scale (CPAS-11, Bernardo et al., 2022) and the Brief Resilience Scale (BRS,

Smith et al., 2008) in 2436 participants. The data was collected online during the outbreak of

the Delta variant of SARS-CoV-2 in the Philippines (see Dizon et al., 2023; Mendoza et al., 2022

for more details on the data collection procedure).

Networks. We split the group based on their BRS scores according to the cut-off values as

reported by Smith et al. (2013): low resilience (BRS < 3, n = 836) versus normal to high

resilience (BRS ≥ 3, n = 1551). When comparing groups, it is best that sample sizes are equal to

ensure that differences in the estimated networks are not due to differences in power (van

Borkulo et al., 2022). Therefore, we randomly sampled 836 participants from the normal to

high resilience group. In this way, both networks are estimated from the same number of

participants.
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We then estimated the Ising network models of the coronavirus anxiety symptoms

(CPAS-11) for these groups using the IsingFit package in R (van Borkulo et al., 2014; van Borkulo

& Epskamp, 2023). To do so, we first binarized the CPAS-11 scores as the Ising network model

is estimated from binary data (van Borkulo et al., 2014). The CPAS-11 items range from 0 (no

symptom presence at all) to 3 (symptom presence nearly every day). We chose to binarize on

symptom absence versus some symptom presence. This means that all CPAS-11 values ≥ 1 are

recoded into 1. The cutoff value of CPAS-11 is 15 for the 0-3 scale (Bernardo et al., 2022). This

corresponds to 8 active nodes for the binarized scale (see Appendix C for details), and we will

use this value for calculating the stability metrics. This means that the healthy phase consists

of a sum score of actively present symptoms below 8, and the anxious phase starts at 8 actively

present symptoms or more. Note that we did not include the resilience factors (BRS) in the

networks, as these variables were used to split the groups. Including variables into the

networks that were initially used to split the groups could potentially introduce bias (de Ron et

al., 2021; Haslbeck, Ryan, et al., 2021).

Comparison of the Two Networks. From these networks we (1) compute the stability

landscapes as described in the previous section, (2) compute the stability difference, and (3)

apply the NCT to test for significant differences in global connectivity and overall structure

between the two symptom networks of resilience groups (van Borkulo et al., 2022).

Results

Figure 6 shows the results for the stability landscapes computed from the symptom network of

low resilience participants (left; panel a) and normal to high resilience participants (right;

panel b). The stability landscape of the low resilience group goes in a steep line towards a

stable point of 10 actively present symptoms. This is above the cut-off value of 8 symptoms or

higher, meaning that the anxious phase is stable for the low resilience group. The stability

metric for the healthy phase is 0.00 (SE = 0.01, 95% CI [0.00, 0.00], p <.0015), and the stability

metric for the anxious phase is 0.26 (SE = 0.11, 95% CI [0.00, 0.41], p = .204). However, the

landscape for the normal to high resilience group shows a much wider basin with stability

around 5 actively present symptoms, which falls below the cut-off value of the anxious phase.

Thus, the healthy phase is more stable for the normal to high resilience group. The stability

metric for the healthy phase is 0.06 (SE = 0.11, 95% CI [0.00, 0.38], p = .422), and the stability

metric for the anxious phase is 0.00 (SE = 0.01, 95% CI [0.00, 0.03], p <.001). The stability

difference for the low resilience group is -0.26 (SE = 0.11, 95% CI [-0.66, -0.13], p = .001) and for

5 As the variance of the bootstrapping samples is extremely low, the p-value is not verymeaningful here.
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the normal to high resilience group is .06 (SE = 0.11, 95% CI [-0.05, 0.33], p = .573). The

difference between the two groups is 0.31 (SE = 0.16, 95% CI [0.11, 0.99], p = .002).

Figure 6. The landscapes of two groups. The cut-off value for the anxious phase is 8 symptoms

or more (the dotted vertical line). Panel (a) shows the stability landscape for the low resilience

group. The stable point is on 10 actively present symptoms, which falls within the anxious

phase. Panel (b) shows the stability landscape for the normal to high resilience group. The

stability landscape shows a much wider basin with a stable point that falls within the healthy

phase

The NCT reports no significant differences in overall structure (M = 0.51, p = .98) nor

global connectivity (S = 0.85, p = .69). As the test found no global differences, we did not look

further into potential local differences between specific edges.

Conclusion andDiscussion

In this section, we demonstrated the use of stability landscapes of networks to compare groups

and provided an empirical illustration that can serve as an example for future research. We

found that the anxious phase was stable for the low resilience group, while the healthy phase

was stable for the normal to high resilience group. However, the NCT did not reveal differences

between the two estimated networks. Thus, comparing networks of two groups based on their

underlying stability landscape may yield different results than the NCT. This is because the

stability landscapes are computed based on Ising networks, which consist of both connectivity

and threshold parameters. The NCT can be used on Ising networks, but it only compares the

networks on their structure (i.e., edge weights). There may be differences between groups that

are captured within the threshold parameters but not considered by the NCT. Contrarily, the

stability landscapes for Ising network model networks are calculated from both the edge
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weight parameters and threshold parameters. As a sensitivity analysis, we computed the

stability landscapes from the two networks while holding the thresholds constant over the

networks. In other words, we computed the stability landscapes using the two networks with

different connectivity parameters but using the threshold parameters from the low resilience

group in both models. In this case, the landscapes were much more similar (see Appendix C).

This explains potential differences between the NCT and stability landscapes. We recommend

using both to complement each other.

General Discussion

In this article, we proposed a novel method to quantify the stability of Ising networks in

psychology using the generalized stability landscape function. The generalized stability

landscape function represents the stability of the network’s different states (i.e., the sum of

actively present nodes). The lower the potential, the more likely that the network will end up

in that state – just like a ball on a landscape that tends to roll down to a lower place. The main

purpose of the method is to provide a quantitative, intuitive representation of the stability

landscape of psychological networks. Instead of only studying the stability of the current

phases of the system using simulations (Lunansky et al., 2024), the method presented in this

paper computes the full stability landscape of the system as a whole. This allows us to

understand the system’s phases and their relative stability, as well as compare the stability of

the system across groups.

We connected the computation of stability landscapes with the network theory of

psychopathology (Borsboom, 2017) and demonstrated how the potential function can be used

to quantify the stability landscape of psychopathology networks estimated from cross-

sectional data that consist of Major Depressive Disorder (MDD) symptoms. As an illustration,

we showed how variations of the depression symptoms network lead to different stability

landscapes. Furthermore, we proposed a set of stability metrics from the landscape function.

Finally, we used an empirical example to demonstrate how different stability landscapes

can be empirically estimated from cross-sectional data. We estimated networks of PTSD

symptoms in two groups with different levels of resilience, as measured by the Brief Resilience

Scale. Afterward, we estimated the corresponding stability landscapes and showed how group-

level differences in resilience indeed indicated differences in stability landscapes. By also

considering the threshold parameters of the networks, comparing groups by their stability

landscapes provides an added value next to existing network comparison methods, such as the
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Network Comparison Test (van Borkulo et al., 2022) As such, the proposed method is a

meaningful complement to the current network analysis toolbox.

The current method holds several assumptions that we would like to clarify. First, the

method uses sum scores as a representation of the network. For example, using the number of

depression symptoms as an indicator of depression severity. As such, it does not differentiate

between specific active symptoms. However, specific symptoms can have different thresholds

for activation, for example, depressed mood may be more easily activated than suicidal

ideation. But, once active, both nodes contribute equally to the symptom severity. We believe

this approach is an acceptable simplification for symptom networks of several specific

disorders. However, this assumption may not necessarily hold for networks with more

differentiated symptoms. For example, networks consisting of combinations of depression

symptoms and anxiety symptoms, bipolar disorder symptoms, or networks with nodes that

extend beyondmere symptoms, such as risk or protective factors.

It is also important to note that we used the Ising network models estimated from cross-

sectional group data to represent psychological systems and construct landscapes. This means

that conclusions can only be made at the group level. If one is interested in interpretations on

the individual level, cross-sectional models are only meaningful when the group is

homogeneous enough, or in other words, with high ergodicity (Fisher et al., 2018; Molenaar,

2004). Therefore, all the limitations of cross-sectional models for individual inferences will

also apply to the landscapes constructed therefrom. One possibility to overcome this limitation

would be the development of idiographic methods to estimate Ising models from longitudinal,

individual data, which are currently lacking. A second possibility would be to compute stability

landscapes from other types of network models which are estimated from individual data,

such as Vector Autoregression (VAR) models. However, these models are linear and cannot

account for multistability, which is only possible in nonlinear models (Haslbeck et al., 2022;

Haslbeck & Ryan, 2022). But even if methods to compute stability landscapes from idiographic

network models were developed in future research, it would not be straightforward to collect

the necessary data from an individual to compute their stability landscape. The data collection

period would need to span a long period of time with enough variability to assess not only the

individual’s current phase but also potential alternative phases that are captured by the

landscape. An alternative way forward would be to combine cross-sectional and idiographic

approaches. Cross-sectional methods, such as the proposed approach in this paper, could

identify typical networks and stability landscapes that are characteristic of averaged healthy or

unhealthy phases. Idiographic data collection would then be used to identify the type of
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network and stability landscape that best describes specific individuals. Currently, it remains

an open question how this could be done exactly, but we believe it would make a highly

interesting novel research line to investigate.

We see several topics for future research that could further the presented approach. First,

instead of defining a clinical cut-off value between a healthy or dysfunctional state beforehand,

one could, in theory, use the shape of the stability landscape to this aim. For example, if one has

data from a general population and the stability landscape shows bistability, the area that

separates the two stable states could contain a meaningful cut-off value that separates the

healthy sample from the clinical sample. The simulations with adjusted empirical networks in

the current paper did not find such bistability, but future research could focus on finding an

example of a dataset that leads to a bistable stability landscape and determine the optimal

method to use the shape of this landscape for diagnostic purposes.

Second, the empirical validation of the presented method is of course a pressing topic for

future research. An interesting topic would be further investigating the relationship between

the stability metrics and specific network structures. In the current study, we found the

landscape difference is mainly associated with node thresholds instead of the strength of

network connectivity. This may be different in another research context. Researchers may also

look into the relationship between the stability metrics and other variables, for example,

treatment outcome. In this way, we can gain more understanding of the meaning of the

system’s stability and its practical implications.

Finally, we used symptom networks as illustrations, but the use of this method is not

restricted to symptom networks. In principle, the same method can also be used for any other

Ising networks for which the aforementioned two assumptions hold. For example, to

understand how attitudes (feelings, beliefs, and behaviors) evolve. The Causal Attitude

Network (CAN) model uses the Ising network model to explain how people move from

negative attitudes about something or someone towards a more positive attitude, or vice versa

(Dalege et al., 2017). It could be interesting to compute the stability landscapes of attitude

networks to understand how stable positive or negative attitudes about, for example,

politicians are (Dalege et al., 2017). Similarly, while we used IsingFit (van Borkulo et al., 2014;

van Borkulo & Epskamp, 2023) to estimate Ising network models throughout the current

article, the landscape construction method we propose is not exclusive to this estimation

technique. Alternative approaches for estimating Ising network models have been suggested

recently, including nonregularized and multivariate estimations (Brusco et al., 2023), as well

as methods for correcting selection bias (Boot et al., 2023). Despite the differences in
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estimation methods, as long as the resulting network model remains an Ising network, the

structure of the Hamiltonian remains consistent. Consequently, Ising networks derived from

other estimation techniques can be employed for landscape construction using the same

methodology outlined in this article. With this proposed method, we are one step closer to

understanding the complexity and dynamics of psychological systems.
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Abstract

The past few years have seen a rapid growth in research on early warning signals (EWSs) in the

psychopathology domain. Whereas early studies found EWSs to be associated with sudden

changes in clinical change trajectories, later findings showed that EWSs may not be general

across variables and cases and have low predictive power. These mixed results may be

explained by the diverse methods employed in clinical EWS studies, with some of these

approaches and practices potentially misaligned with the underlying theory of EWSs. This

article employs a variety of methods, such as a narrative review, mathematical derivations,

simulations, and visual illustrations, to support our claims, explain specific assumptions, and

guide future empirical research. This multitude of methods serves our aim to provide

theoretical as well as methodological contributions to the field. We identify the following key

assumptions for EWS validation studies: the system departs from a point attractor, EWSs

appear before the critical transition, and EWS variables align with system destabilization. The

literature review shows that the common research practices in the field are often not in line

with those assumptions, and we provide specific suggestions corresponding to each of the

assumptions. More rigorous empirical evidence is needed to better validate the existence of

EWSs in clinical sudden changes and fully realize their clinical potential. As theory-based

prediction tools, EWSs require stronger alignment between theory and practice to enhance

both theoretical understanding and predictive accuracy.
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Introduction

Clinical change is not always linear and gradual. In fact, about half of the clients undergo one

or more sudden changes in their symptom trajectory over the course of treatment (Helmich et

al., 2020; Shalom & Aderka, 2020; Tang & DeRubeis, 1999). Those sudden changes are difficult

to predict, yet have important clinical implications because they are often closely linked to

treatment outcomes (Helmich et al., 2020; Shalom& Aderka, 2020). Recently, researchers have

proposed to use early warning signals (EWSs) to predict sudden changes in clinical trajectories

(Dakos et al., 2012; Lenton, 2011; Scheffer et al., 2009, 2012). EWSs are a group of statistical

indicators depicting the instability of a complex system, that are generally observable before a

system changes to a new stable state. Intuitively, the existence of EWSs can be understood by

the following idea. Different phases1 may emerge from the interactions among interdependent

biological, psychological, and sociocultural factors within a complex person-environment

system. In psychopathology, those phases may represent mental suffering (e.g. depressed

mood, anxiety, panic), but also a healthy, well-functioning phase (Cui et al., 2023; Granic et al.,

2018; Hasselman, 2022; Hayes & Andrews, 2020; Hayes & Yasinski, 2015; Olthof, Hasselman,

Oude Maatman, et al., 2023). Often, such phases are relatively stable, which means that the

system may be stuck in a certain phase, having difficulties disengaging or escaping from it. For

example, people with depression may be stuck in a phase characterized by depressed mood,

reduced sleep quality, and difficulties in concentration (Hayes & Andrews, 2020; Holtzheimer

& Mayberg, 2011). Yet the stability of phases may decrease over time, making it easier for the

system to escape. The destabilization of the unhealthy phase, which corresponds to the

loosening of undesirable cognitive, affective, or behavioral patterns (Hayes & Andrews, 2020),

then functions as a mechanism for the sudden gain toward a healthier phase. Likewise, the

destabilization of a healthy phase may function as a mechanism for the sudden loss toward the

unhealthy phase. When a certain phase is destabilized, the system state is more likely to

fluctuate, and after perturbation, the system takes longer to recover. As a result, various early-

warning indicators, such as increasing variance (associated with stronger fluctuations) and

autoregressive coefficients (associated with slower recovery), can be observed in the data.2

1 Here we use the term “phase” to represent a collection of system states that are related to a system attractor and have
similar qualities. Other literature may use different terms for a similar concept, whereas we aim to make clear the differences
between a single state and a collection of states and stay consistent with our previous work (Cui et al., 2023, 2025).

2 A related, well-studied concept is emotional inertia, which is also operationalized as high autocorrelations (specifically
in affective states). Conceptually, emotional inertia refers to the persistence of feelings across time and contexts, or the
inability of affective states to be adaptively regulated to baseline after perturbations, and a large body of empirical findings has
suggested that high emotional inertia is related to psychological maladjustments and various mental disorders (Koval et al.,
2015; Koval & Kuppens, 2024; Kuppens et al., 2010). Yet recently, Koval and Kuppens (2024) proposed to understand
emotional inertia as EWSs for sudden loss based on both conceptual and empirical evidence. Both emotional inertia and EWSs
can show the inability to return to the stable attractor (also known as the adaptive home base in some literature) after
perturbations and can be assessed through autocorrelation in individual time series. Moreover, most consistent findings
regarding emotional inertia were found by comparing healthy individuals with different vulnerability levels instead of



Chapter 6

122

Therefore, we may use the EWSs evidenced in measurements of the mental state of a client to

predict whether the client is likely to have a sudden change soon.

Several studies have found empirical evidence that EWSs may exist for clinical changes

(Olthof et al., 2020; Wichers et al., 2016, 2020) and hypothesized that EWSs can potentially be

used for detecting vulnerable individuals, determining the timing of interventions, and

predicting the direction of change (Helmich et al., 2021; Schreuder et al., 2022). Later studies,

however, found the predictive power of EWSs to be generally weak, EWSs only occurring in

some variables different for each client, and overall, not showing a clear consistent pattern (F.

M. Bos et al., 2022; Curtiss et al., 2023; Dablander et al., 2023; Helmich et al., 2022; Schreuder

et al., 2020). Those mixed findings may arise from individual differences or measurement

techniques, but it is also likely that they stem from methodological issues (Helmich et al.,

2024). Considering the relative novelty of the field, various research methodologies and

paradigms to study EWS coexist. Some studies monitor symptom levels with frequently

repeated measures (Olthof et al., 2020; Wichers et al., 2016), and some studies only use pre-

and post-assessments to evaluate whether a change has occurred (Curtiss et al., 2023; van de

Leemput et al., 2014); some studies use emotion items to calculate EWSs (F. M. Bos et al., 2022;

Curtiss et al., 2023; Wichers et al., 2016), and others use treatment process measures, for

example, therapy progress and insight (Olthof et al., 2020). Among this variety of methods,

some might be more suitable than others, yielding more reliable results. Assessing these

methods requires a thoughtful examination of their alignment with the foundational theory of

EWSs. While some studies and reviews have discussed several potential issues of research

methods in this field (Dablander et al., 2023; Helmich et al., 2024), we identified several

important facets that have received limited attention. To address these points, a rigorous

evaluation is needed to establish a direct link between the mathematical theory of EWSs and

specific research practices in psychopathology. Therefore, in this paper, we aim to formulate

recommendations for improved research methodology in clinical EWS studies based on a

mathematical derivation of EWSs in multivariate dynamic systems.

comparing people with and without mental disorders, or people with different severity levels of mental disorders. Therefore,
high emotional inertia is more likely to be a warning sign for healthy individuals instead of a general indicator of mental illness.
Taken together, emotional inertia may be a special case of EWSs indicative of maladaptive transitions. In other words,
emotional inertia can be used as an indicator of vulnerability in healthy individuals, but in general, emotional inertia may be
better conceived of as a signal of change instead of a maladaptive characteristic. We would like to refer readers interested in
the relationship between emotional inertia and EWSs to Koval and Kuppens (2024), for more comprehensive discussion.
Although there is a close link between the two concepts, most studies under the term emotional inertia are based on
interindividual comparisons instead of studying whether emotional inertia increases within an individual. Consequently,
those studies aim to detect who is likely to have mental disorders instead of when a person is likely to have a sudden change.
In the current article, we focus on the studies under the term EWSs, whose primary focus is to predict whether a sudden
change is likely to happen in the near future within an individual.
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Methods

The current article is a theoretical and methodological contribution. We apply multiple

methods to support our claims, evaluate the common research practice in the field, and

provide practical suggestions for empirical researchers.

We first provide a mathematical, theoretical derivation of EWSs in general multivariate

dynamic systems, which clarifies the original EWS theory that psychopathology borrowed

from complexity science. We show the mathematical derivations in Appendix D1, and in the

main text, we explain the gist of the derivations with verbal language, visual illustrations, and

simulations (with the simulation details in Appendix D2). From the derivation, we identify

three key assumptions that should be considered when designing EWS studies: the system

departs from a point attractor, EWSs appear before the critical transition, and EWS variables

align with system destabilization.

After that, we elaborate on each assumption and discuss their implications for research in

the psychopathology domain. For each assumption, we investigate whether the research

practices in previous empirical studies were in line with those assumptions and provide

suggestions for future studies. We used narrative reviews considering the field of EWS studies

in psychopathology is still in its initial stage and the number of empirical studies is rather

limited. Some other methods were also used to better explain each specific assumption. For the

first assumption, we introduce a new visual check method, namely the distance plot, to assist

researchers in examining if this assumption is met. We also include brief simulations and

empirical examples for this method. For the third assumption, we provide a brief literature

review of the EWS investigations in other scientific fields to illustrate the difference in research

methods between psychopathology and other disciplines.

Finally, we provide an integrative summary and discussion of our findings.

Results

The Formal Theory of EWSs

Unlike other verbal theories in psychopathology (Robinaugh et al., 2021), the theory of EWSs

has a formal background rooted in mathematical derivations, enabling the analysis of its key

assumptions. The formal background of EWSs is based on bifurcation theory, which explains

how a gradual change in a system parameter may lead to a qualitative change in the

functioning of a system (Gilmore, 1993; Haken, 2011; Scheffer et al., 2009; Thom, 1975; Zeeman,

1976). We first use the case of a cusp bifurcation as a conceptual explanation, which is a rather

simple scenario from bifurcation theory. Figure 1a (first row) shows a ball on a landscape with
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two local basins in different configurations (columns 1-7). The position of the ball represents

the state of the system, the basins represent the phases of the system3, and the color represents

the altitude of the landscape, showing the stability of the system4. In clinical cases, for example,

the x-axis may represent mood, and the y-axis may represent sleep quality. The right basin

could correspond to the healthy phase (i.e., high mood and high sleep quality), and the left

basin to the depressive phase of a client (i.e., low mood and low sleep quality). When the basin

is deeper (represented by darker blue colors), the phase is more stable; when the basin is

shallower (represented by lighter blue and green colors), the landscape is shallower, and the

phase is more unstable.

The shape of the stability landscape of the system is often determined by one or more

control parameters. By adjusting the control parameter (which can be, e.g., alleviating

financial stressors, improving social contacts, or making progress in psychotherapy), the

landscape changes smoothly from the first column to the last column in Figure 1a, resulting in

a destabilization of the left, depressive basin and a stabilization of the right, healthy basin. At a

certain point (termed the bifurcation point), the left basin no longer exists, causing the ball to

abruptly move to the right basin, this occurs in the second to last column in Figure 1a. This

represents a qualitative transition in the state of the system, for example, a sudden gain in

treatment. Before the transition, although the state of the system (i.e., the position of the ball)

does not change much, the phase’s stability (i.e., the depth of the basin) decreases. As a result,

when the system is under small perturbations, it is easier for the system to move to another

position (i.e., the ball moves further away from the equilibrium point), and it is harder for the

system to recover (i.e., the ball returns more slowly to the equilibrium point). For example,

after experiencing positive events, the client becomes more joyful than before and does not

return to the depressed state as quickly, which represents the destabilization of the depressed

phase.

For real-life systems, it is often hard to tell how stable a phase exactly is (i.e., the altitude

of the ball’s position is not easy to measure). However, if we observe that the state of the

system (i.e., the position of the ball) exhibits increasing variance and increasing

autocorrelation, we can infer that the stability of the phase is decreasing, and a critical

transition may happen in the near future. Take a client with depression for example, it is

difficult to exactly determine the client’s stability of the current depressive phase, yet we can

3 To avoid confusion, the term “state” is used in this article for the specific condition defined by the values of the system
variables, and “phase” is used for the higher-level patterns of the system, which consist of many states that are qualitatively
similar (Cui et al., 2023).

4 Note that the definition of “stability” in this article may not be the same as some other works in this field (e.g., the time
that a system spends to go back to its local minimum after a small perturbation, Dablander et al., 2023). See Cui et al. (2023)
for the relationships between different stability measures based on a stability landscape.
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assess how the mood level and sleep quality of this person change over time and infer the

stability of the person’s depressive phase based on such statistical information.

Figure 1. Different examples for bifurcation-induced transitions. Colors that are darker blue

represent deeper regions of the stability landscape, and therefore stabler system states. Points

and solid circles represent the actual state of the system, and asterisks and dashed circles

represent the attractors that are not occupied by the system. For each example, the tipping

point is at the second column from the right, represented by arrows. (a) The direction of

stability loss and the transition involve both the x- and the y-axes. (b) The direction of stability

loss and the transition involve only the x-axis. (c) The direction of stability loss only involves

the x-axis; the transition starts along the x-axis but later involves the y-axis. (d) The direction

of stability loss involves both the x- and the y-axis; the transition starts involving both the x-

and the y-axis, but the x-value does not change much after the transition. (e) The direction of

stability loss involves both the x- and the y-axes; the new attractor is not a point attractor but a

limit circle, and both the x and the y values overlap with the previous point attractor.

EWSs do not only exist for the simple cusp bifurcation. Many real-life systems are similar

to the cusp bifurcation in the sense that one basin of the system disappears at the tipping point
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(Scheffer et al., 2012), which means that there is at least one direction in which the system can

tip over to a new phase.5 Mathematically, approaching the bifurcation point is asymptotic

behavior, that is the autocorrelation of the system state will approach 1, and the variance of the

system state will approach infinity (assuming small random perturbations). In real-life

observations, it is of course not possible to observe this asymptotic behavior (i.e., we cannot

use the local stability characteristics of the system to infer the dynamic properties when the

system is infinitely close to the bifurcation point, and we cannot observe a system that is

infinitely close to the bifurcation point while keeping the system from transitioning to another

phase). Hence practically, the aforementioned conclusion implies that when the system is

close enough to the bifurcation point, the primary factor that drives the changes in variance

and autocorrelation is the destabilization of the current phase (i.e., the flattening of that valley

in the potential landscape). The destabilization thus causes the increase in variation and

autocorrelation, overshadowing the influence of other factors. This means that if we observe

an unusual increase in variation and autocorrelation in a client’s symptom severity ratings (for

instance calculated in a moving window), it is more likely that this increase is driven by the

destabilization of the client’s landscape and that a sudden change is about to happen.

Previous researchers have provided mathematical proof for the presence of EWSs in one-

dimensional systems (Scheffer et al., 2009) and multidimensional systems that can be

sufficiently described by the tendency of descending along a landscape without involving

curling forces (Dablander et al., 2023). Yet, real-life psychological systems are likely to be

general multidimensional systems, for which the simplified assumptions above may not hold.

In Appendix D1, we conduct a mathematical derivation for multivariate systems in general,

which is more realistic for real-life systems in the psychopathology domain and enables us to

draw implications for multivariate research. As the details of mathematical derivation will not

be informative for all empirical EWS researchers, we try to explain the gist of the theory in

verbal form in the main text, with several specific scenarios shown with ball-and-landscape

illustrations (the rows in Figure 1). Those illustrations are all variants of the cusp model we

depicted in the first row, Figure 1a, with details explained in Appendix D2. Using verbal

descriptions and specific examples instead of mathematical derivations for general cases

inevitably trades rigor for readability. Therefore, if a step is logically not strict enough in the

verbal explanation or the generalizability of the specific scenarios is questioned, we refer the

interested reader to the mathematical proof in Appendix D1.

5 Inmathematical language, this means the dominant eigenvalue at that equilibrium becomes zero.
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We start by introducing the assumed theoretical object of study as a multivariate

stochastic dynamic system. This implies that there are multiple (cognitive, emotional,

biological, social, etc.) variables that describe the mental state of an individual, and those

variables have deterministic influences on each other, yet all those variables are also perturbed

by random noise (e.g. everyday events). We also assume that for an individual diagnosed with

amental disorder, the dynamic interactions between the variables create a stable, system-wide

attractor state that can be labeled as pathological (e.g., a depressive state) and that the

system’s behavior remains in this stable state, even after some perturbations (Hayes &

Andrews, 2020). Consequently, it is difficult for the individual’s mental system to move far

away from this pathological state. To simplify the subsequent discussion, we use the phrase

the strength of attraction to refer to the strength of the pull exerted on the mental system of the

individual to remain in the stable pathological state and the difficulty with which the system

moves away from this stable state under perturbations.

If the strength of attraction remains high, the system is unlikely to escape from the

pathological state. This must hold for all directions, which means that a small perturbation in

any variable or any combination of variables cannot drive the system far away from this stable

state. However, when the strength of attraction gradually decreases and approaches zero, a

small perturbation can take the system away from this pathological state and make it

transition to another state, which might be a healthier one. Just prior to the transition, the

system still has the tendency to go back to the old stable state, but this tendency is weaker, so

the speed at which the system returns to the old stable state is slower, which leads to an

increase in the variance and autocorrelation of the system, known as the EWSs.

Here we emphasize the first important assumption of EWSs in multivariate systems: the

system should experience bifurcation-induced tipping, in which the system is attracted by a point

attractor that loses its stability after the transition. This means that before the transition, the

system has the tendency to move to the single most stable point, but this tendency becomes

weaker and weaker before the transition. Only then do variance and autocorrelation show the

instability of the system. In a clinical scenario, a point attractor may correspond to a certain

stable level of depressive symptomatology of a client. Sometimes the client may feel a little

better or a little worse, due to all kinds of everyday events, yet the client always quickly returns

to the same baseline level of depressive symptoms. Over the course of treatment, the depressed

phase gets destabilized (Hayes & Andrews, 2020), which makes the client’s depressive

symptoms fluctuate more. Also, little moments of feeling better may last longer and longer (i.e.,
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the return time to the depressed state increases). Such increased fluctuations and return times

are then EWS indicating that a sudden change will happen soon.

In all the ball-and-landscape scenarios in the rows of Figure 1, the system starts from a

point attractor (such as a stable level of depression). Note that in Figure 1e, the system ends in

a cyclic attractor, which is not a problem because what matters is that the system starts in a

point attractor. After the transition, the system may end in a different type of attractor. This

requirement is not to be taken lightly: if the system does not start in a point attractor, the

variance and autocorrelation will not be indicators of the stability of the system. In Figure 2 we

depict a particular situation in which the system starts from a cyclic attractor. In this situation,

the system tends to cycle between various states and the variance or autocorrelation of the

variables represents the strength of the fluctuation instead of the instability of the fluctuating

state. This type of situation may happen when cyclical fluctuations are an intrinsic property of

the disorder, such as for rapid switching forms of bipolar disorder or borderline personality

disorder (MacKinnon & Pies, 2006). In those clients, according to the model by Kraepelin

(MacKinnon & Pies, 2006), mood states are unstable and change rapidly, as well as energy

levels (see Figure 2, in which the horizontal and vertical dimensions represent the mood and

energy of a client). In the beginning, a client may be in a high energy and manic state, then the

energy of the person runs out, leading the client to a low energy andmanic state. After that, the

client goes to a low energy and depressed state, which leads to the cumulation of energy, and

the client goes back to the high energy and manic state. The recovery of those clients manifests

as the stabilization of the mood state and energy level, which means their mood and energy

states become less extreme (i.e., the radius in the cyclic attractor of Figure 2 becomes smaller).

Thus, one would expect to find decreases in variance and autocorrelation of mood and energy

measures in the case of successful treatment. Hence, the decrease of variance and

autocorrelation does not mean that the client’s phase of bipolar disorder is becoming more

stable because the attractor state of a (rapid switching) bipolar disorder, in terms of mood and

energy variables, is not a point attractor. The system does not have the tendency to return to a

single stable point but quickly alternates between different states. Therefore, it is not suitable

to calculate EWSs for those clients based on mood and energy measures to use them for the

prediction of sudden changes in their psychopathology, at least not from the methodological

framework presented in the current paper.
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Figure 2. An example scenario without EWSs. For clients with rapid-switching forms of bipolar

disorder or borderline personality disorder, the system transitions from a cyclic attractor to a

point attractor. Thus, the variation and autocorrelation in mood measures represent the

strength of fluctuation of the cyclic attractor instead of the stability of a point attractor.

The second assumption is that the increase in variance and autocorrelation should appear

closely before the transition. This is already implied in the general concept of EWSs as the heralds

of imminent change. The mathematical derivation that the variance will approach infinity and

autocorrelation will approach 1 holds only as the system approaches the bifurcation point. As

explained above, for real-life observation, this means EWSs overshadow other factors when

the system is sufficiently close to the tipping point. If we calculate the variance or

autocorrelation far before the transition, they are not able to pick up on rising instability

among all other causes of variance and autocorrelation. If we calculate the variance or

autocorrelation of the system during the transition, or after it has already transitioned to the

new basin, the variance and autocorrelation of the variables are not, or not exclusively, related

to the stability of the previous phase andmay actually be relatively high as a consequence of the

shift itself, instead of the rising instability. Taking the example of sudden gains in depression

again, if we want to infer the stability of the depressive phase, we should not include

observations of the healthy phase in calculations because anything calculated therefrom

would become a representation of both phases instead of only the destabilization of the

depressive phase. Therefore, it is only meaningful to use EWSs to predict a transition that is

about to happen.
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Note that we frame this assumption mainly for empirical research testing whether and

when EWSs exist for psychological sudden changes. Practically, it would not make sense to

calculate EWS after knowing that the transition has happened. But using EWS as a predictor in

clinical practice is only possible after the phenomenon of EWS is sufficiently understood for

clinical changes (i.e., after knowing when we can use what EWS to predict which kind of

sudden changes for whom), which, according to our evaluation, is not fully established at the

moment. It could be possible that, with sufficient empirical evidence, in the future, we know

that a certain amplitude of EWSs is very likely to predict a clinical sudden change, which can

then be used for practical purposes. Yet, this kind of empirical evidence needs to first be

cumulated through studies with sound methodology, which is the core argument of the

current article.

Besides the two assumptions mentioned above, there are some additional considerations

for multivariate systems. For those systems, a key point is that a state is only stable if it is

stable in all directions, but it is unstable if it is unstable in any direction. We again use the ball-

and-landscape metaphor to describe this idea. Note that we can only show two variables, yet

for real-life systems, there might be a much larger number of variables creating a

multidimensional landscape. For a certain real-life transition, there are some directions6 in

which the system loses its stability, and those directions may involve one or more variables. In

Figure 1a, this direction is to the upper right corner and involves both x and y, whereas, in

Figure 1b, this direction is parallel to the x-axis and only involves the variable x. In clinical cases,

those directions may correspond to the symptoms that first start to appear or alleviate (we will

provide more detailed examples later). The important point here is that even if it involves only

one variable it still induces a leak in the basin, making the system transition out. Thus, our

third assumption is that the direction in which the basin becomes flat is also the direction in

which the system leaves the basin. Therefore, the direction of EWSs is also the direction of the

start of the sudden change. In other words, the EWSs and the start of the transition involve the

same set of variables7. Empirically, this simply implies that if a transition is evidenced in a (set of)

variables, then the EWSs should be studied in the same variables, not in other simultaneously

observed variables that do not show a transition. Note that the direction in which a system

starts a transition does not necessarily map onto the straight line from the previous attractor to

the new attractor. We illustrate this with Figure 1c, in which the transition is along the x-axis

at the beginning, but later also involves another variable y. Nevertheless, if one variable is

6Mathematically, those directions are pointed by the leading eigenvectors.
7 Mathematically, this implies that only variables with nonzero loadings in the eigenvector will exhibit variance

approaching infinity and autocorrelation approaching 1 as the system approaches the bifurcation point. Detailed illustrations
can be found in Appendix D1
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involved in the destabilization of the system, then it must be involved in the transition process

as well.8

Take two clients with depression for example. Assume the first one only has depressed

mood as the major symptom (represented by the x-axis in Figure 1a), and the second one has

both depressed mood and sleeping problems (represented by the x- and y-axes in Figure 1b or

Figure 1c). During treatment, both clients had a sudden gain and recovered. If we would

monitor mood and sleeping problems across treatment, we may see a sudden change in mood

for the first person, but sudden changes in both sleep quality and mood for the second person.

In this case, we would expect the first person to have EWSs in mood before the transition, but

not in sleep quality because the first person did not have sleep problems to begin with. For the

second person, EWSs may occur in mood or sleep quality or both, because the person’s

depressive phase may first destabilize along the sleep quality axis or the mood axis. If the

person’s depressive phase first destabilizes along the sleep quality axis, (i.e., the person first

improves in sleep which then also positively affects the mood), EWSs should be found in sleep

quality but not mood, because changes in mood follow the initial destabilization in sleep. If the

person’s depressive phase destabilizes along both axes simultaneously, EWSs should occur in

both variables. If it is unknown on which axis the depressive phase first destabilizes,

monitoring both variables for EWSs is best. There is no need to monitor other variables that

are not a part of this person’s change process because these other variables (e.g. appetite) are

not involved in the transition.

In sum, our mathematical derivation illustrates three important general assumptions for

EWS research: (1) the system starts from a point attractor, and this attractor becomes unstable

after the transition; (2) EWSs appear right before the transition, not after the transition or far

before; (3) EWSs occur only in the variables in which the (start of the) transition occurs. These

three assumptions are vital prerequisites for investigating whether EWSs exist or not as

precursors to sudden changes in mental disorders. In the following sections, we further discuss

the assumptions in relation to empirical studies and provide recommendations for future

research.

8 A special case is that the new state may have a similar value on an axis even if the system destabilized along this axis
before the transition (e.g., the x-axis in Figure 1d). Therefore, if we only observe the system before and entirely after the
transition, we may not be able to observe the change in this axis during the transition. This may happen in real life, for
example, if the x-axis represents the external behavior of a child, and the y-axis represents the conflict resolution of parents. If
the conflict resolution of parents is inferior, the childmay not dare to exhibit externalizing behavior to prevent aggravating the
conflicts; when the conflict resolution of parents improves, the child may start to exhibit externalizing behavior; when the
conflict resolution of parents improves evenmore, the externalizing behavior of the childmay reduce again to a level similar to
the beginning, but now the whole family system is much healthier. In this case, the child's externalizing behavior may show
EWSs before the transition even if the externalizing behavior's beginning and end levels are similar. Nevertheless, if we
observe the whole trajectory, it would be obvious that the child's externalizing behavior also plays a role and changes through
the transition, so our conclusion still holds in this case.
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The First Assumption: The SystemDeparts from a Point Attractor

As shown in our derivation, an important assumption of the underlying change mechanism is

that the system before the transition is in a point attractor, but after the transition, that point

attractor diminishes. Previous studies used different methods for detecting whether a sudden

transition has happened, yet they do not always establish whether the transition departs from

a point attractor (Table 1). Some studies used the difference in symptom severity scores before

and after an assessment period (two measurement occasions) to indicate whether a transition

had taken place. Using two measurement points does not provide enough information to

investigate which type of attractor (point, cycle, or some other type) the systemwas previously

in. Some other studies used several repeated assessments and examined if the change between

successive assessment points exceeded a certain clinical threshold. The problem here is that if

an assessment touches the threshold and then comes back to its previous value, it is still

counted as a transition (F. M. Bos et al., 2022), even though the system did not enduringly

leave the original phase. Helmich et al. (Helmich et al., 2022) used a similar method, but with

an additional requirement that the mean level difference before and after the identified

transition had to be large enough, making the results more robust. Other researchers (Olthof et

al., 2020; Wichers et al., 2020) used change point analysis, which is a group of statistical

methods seeking to find transition points in the time series. In general, those methods try to

split the whole time series into parts to make the data points in each part relatively stable

around their own means, but the mean value may differ significantly across different parts

(Cabrieto et al., 2017; Helmich et al., 2021). The advantage of change point analysis is that it

takes the whole time series into account, therefore includes more information, and it performs

better in ruling out false positives because it only identifies a transition if the new phase is

different enough from the previous one and also relatively stable. Change point analysis is

powerful in detecting a point-to-point transition because it tries to make the data points stay

close to the mean level, corresponding to the point attractor, before and after the transition.

However, it may not work well for more complex transition types, for example, the point-to-

circle transition shown in Figure 1e. Traditional change point analysis used in most previous

studies also only works for single-variate data, although multivariate extensions are available

(Matteson & James, 2014).
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In summary, if it can be assumed that both attractors before and after the transition are

point attractors, we suggest future researchers use change point analysis as a main approach

for identifying critical transitions; if a threshold-based method is used, it is important to check

if the system is stably residing in the new phase to rule out the influence of a single outlier. We

also suggest a more general, descriptive method, namely the distance plot, to accompany the

methods described above as a way to visually check whether there is a transition from a point

attractor. A similar method based on recurrence plots has been proposed by Viol et al. (2022),

yet our method is more specific to check this specific assumption of EWSs. The distance plot is

a two-dimensional plot that shows the Euclidian distance between system states at different

points in time (Iwanski & Bradley, 1998; Marwan et al., 2007).

���,�� = ||�� − ��||, (1)

in which the Euclidian distance for two vectors means the square root of the sum of squares of

the differences in variable values. For example, if there are four variables assessed over time,

and at time 1 the variables take the values of (1, 2, 3, 4), and at time 2 the variables take the

values of (2, 3, 2, 3), then the Euclidian distance of the two time points is calculated by:

�1,2 = 1, 2, 3, 4 − 2, 3, 2, 3 = 1 − 2 2 + 2 − 3 2 + 3 − 2 2 + 4 − 3 2 = 2.

If the system is attracted by a point attractor, under a small perturbation, the system will

fluctuate closely around this point. Therefore, the distance between each pair of observations

should be relatively small. However, after the transition, the system no longer stably moves

around this point attractor. Its state is either far from the point attractor or only transiently

crosses the point attractor. In a distance plot, both the horizontal axis and the vertical axis

represent time, and each pairwise Euclidian distance of points is shown as the color of a pixel.

The pixel color in column 1 and row 2 of the matrix, for example, represents the magnitude of

the Euclidian distance between the state of the system observed at time 1 compared to the state

at time 2. Since the distance between the two points is the same regardless of the temporal

order (i.e. time 2 compared to time 1), a distance plot is always symmetric around the diagonal

line. If there is a dark region on the plot, it would indicate the time points along it have similar

values. In contrast, if there is a light region, it would indicate the time points along it have very

different values. Therefore, if the system leaves a point attractor, the distance plot will show a

square of dark region before the transition, and a light rectangle of rather far distance next to

the square. In Figure 3a-b, we show the distance plots for the bivariate simulated data from

examples of point-to-point transition and point-to-circle transition in Figure 1a and 1e (with

the raw time series shown along the axes; a description of the simulation procedure can be

found in Appendix D2). From the results, it is clear that the method can detect the system
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leaving a point attractor, no matter the shape of the new attractor. In Figure 3b, the new phase

does not show a square, but different blocks, which indicates a non-point attractor. This is not

a problem because what is important in the theoretical assumption is about the attractor before

the transition, not after the transition.

Figure 3. Distance plots for (a) simulated system based on the example in Figure 1a, (b)

simulated system based on the example in Figure 1e, (c) ESM affect items, and (d) item scores

of the depression subscale of SCL-90-R from Kossakowski et al. (2017).

We also apply this method to an empirical dataset described and made open access by

Kossakowski et al. (2017). This dataset is from a client with major depressive disorder (MDD)

who completed daily ESM measures up to 10 times per day for 239 consecutive days. Besides
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that, the participant also completed the depression subscale of the Symptom Checklist-Revised

(SCL-90-R). For illustration, we use the time series of 13 ESM affect items1 used inWichers et al.

(2016) and the item scores from the depression subscale of SCL-90-R (28 time points;M = 1.57,

SD = 0.44). The distance plots for both datasets are shown in Figure 3c-d. From the results, it

becomes clear that the symptom severity of the system assessed by the depression subscale of

SCL-90-R may have experienced a transition out of a point attractor, but the ESM affect items

did not. Therefore, the critical transition is more evident in the symptom severity scale instead

of the ESM affect measures. We will further elaborate on this point when discussing the third

assumption. Note that, although differences in time intervals between observations are an

important issue to solve for dynamic statistical models, it is of minor relevance for the

inferences we can draw from the distance plot as long as the total observation time is

sufficiently long to capture a potential transition. This is mainly because the distance plot is

used to detect the critical change that is evident from the whole time series instead of dynamic

relationships between consecutive time points.

The Second Assumption: EWSs Appear before the Critical Transition

As shown previously, EWSs should appear before the sudden transition and predict a

forthcoming transition. This is also a conceptual and practical requirement if we want to

identify early warning signals to predict future sudden transitions. For empirical studies

validating the existence of EWSs, it is also crucial to make sure EWSs are calculated before the

transition because the transition itself can also lead to an increase in variance and

autocorrelation which is not an early warning signal (see Figure 4 for an example and see

Appendix D2 for a simulation study). The influence of the transition itself on EWSs persists

even after detrending the time series, a standard procedure in EWS calculation (Wichers et al.,

2016; the time series in Figure 4 was also detrended before EWS calculation). Although

detrending can remove the effect of gradual trends, it is less effective for a sudden change.

Looking into previous literature, we found that although some studies explicitly make sure

EWSs were calculated before the transitions, it is not always the case for other studies (Table

2).

In order to examine possible EWSs strictly before the transition, the first prerequisite is to

rigorously pinpoint the moment of the transition in empirical studies. Some studies calculate

EWSs for the whole assessment period, without identifying the exact moment of the transition.

For example, the study by van de Leemput et al. (2014) used the difference in depression score

1 Those items include irritated, content, lonely, anxious, enthusiastic, cheerful, guilty, indecisive, strong, restless, agitated,
suspicious, and worries.
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before and after treatment (for depressed clients) or observation period (for the general

population) to represent whether a transition had taken place or not. Results of this study

showed that participants with a greater change in their depression scores also had a larger

correlation between emotion scores. However, because depression scores were not measured

repeatedly throughout the study period, it was not possible to distinguish between a critical

transition and a gradual change (E. H. Bos & De Jonge, 2014), and even if we assume that a

sudden change took place, it is impossible to identify the exact time point of that transition.

Consequently, if a transition had taken place, the EWS calculation period could have included

the transition.

Figure 4. A simulation example of a transition with EWSs. The variance and ACF increase

before the transition, which are the true EWSs. However, the transition itself creates an even

higher peak in variance and ACF, which are not EWSs. Those increases after the transition may

be mistakenly taken as evidence of EWSs if the time window of calculation is not strictly before

the transition. See Appendix D2 for details of the simulation setup.
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Table 2. An overview of assessment periods of early warning signals in previous studies.

EWS calculation period Examples of empirical studies Details

Around the transition (Curtiss et al., 2019, 2023; van

de Leemput et al., 2014)

During the whole assessment;

between-participant comparison

Roughly before the

transition

(F. M. Bos et al., 2022) Before the time that the transitionwas

detected, including the week before

the sudden increase

Strictly before the

transition

(Helmich et al., 2022; Schreuder

et al., 2020;Wichers et al., 2016,

2020)

Before the time that the transitionwas

detected, excluding the week before

the sudden increase

(Olthof et al., 2020) Before the time the transitionwas

detected (the variables used for

transition detection were assessed

daily)

For studies in which the timing of the transition is identified, it is still possible that the

EWS calculation period involves the transition. For example, in the study by F. M. Bos et al.,

(2022), the variables used for detecting transitions were measured weekly, but the data used

for calculating EWSs was measured daily up until the transition point. Therefore, the time

window for calculating EWSs may also include the transition point because the transition may

have happened anytime during that week. In that case, the transition itself would lead to an

increase in variance and autocorrelation. The EWSs detected may then not be true EWSs, but

rather, a statistical byproduct of the transition. For many other studies using the same

assessment frequency (F. M. Bos et al., 2022; Helmich et al., 2022; Schreuder et al., 2020), the

week before the detected transition was excluded from EWS calculations. In those cases, you

move further away from the transition point and lose information by excluding the prior week

but at least it is certain that the EWSs were calculated strictly before the transition. For the

studies using the same assessment frequency for all variables (Olthof et al., 2020), there is no

such pitfall, so it is relatively straightforward to make sure EWSs are calculated before the

transition.

For future research that aims to validate the existence of EWSs, our suggestion is that

EWSs should always be calculated in a period preceding the transition. At the same time, we

do not recommend discarding data before and close to the transition or assessing EWSs too

early before the transition because EWSs are the most salient right before the transition.

Therefore, we suggest the best approach to take is trying to detect the transition with high

time precision, preferably as frequently as all other measures in the study. When that is not
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possible, researchers should try to make sure that the EWS assessment period does not include

the transition, even if it is further apart from the transition.

We would also like to note that the implication of this assumption for EWS validation

studies is naturally different for the research that aims to apply EWSs in clinical practice. The

application of EWSs in clinical practice is ideally undertaken after the predictive power of

EWSs is validated to a certain degree. To our knowledge, most of the studies in the past decade

are validation-type studies, and we suggest given the current status of the field, further

validation studies are still needed before real-life applications. Therefore, our investigations in

this section are mainly intended for validation studies. In validation studies, often the whole

observation period is recorded and analyzed afterward which means that the transition point

is known and can be pinpointed in the time series. Once EWSs have been validated we can

move to the application scenario in clinical practice. Here, the patient’s mental state is

monitored in real time not knowing when a transition is going to happen. When EWSs are

detected (e.g., alleviated variance and autocorrelation of the time series exceeds a threshold),

the therapist can take certain measures to prevent an undesirable transition or to promote a

desirable transition. This action should be taken, theoretically, before the transition, thus what

is observed is that the patient is still in the previous phase but showing EWSs of an upcoming

transition. In this case, EWSs are naturally calculated before a possible transition to meet this

assumption.

The Third Assumption: EWS Variables Alignwith SystemDestabilization

As shown in the previous derivation, the variables that show EWSs are the same ones that

point to the direction of destabilization. In other words, it is the same set of variables that

show EWSs and that are involved in the start of the transition. This does not mean that the

variables that show sudden transitions always have preceding EWSs (see Figure 1c and Boerlijst

et al., 2013), because EWSs only show the direction in which the system loses its stability at the

beginning. After leaving the previous stability basin, it is possible that the system changes its

direction and involves more variables. Nevertheless, as there is not enough evidence, to our

knowledge, to specify which variables are likely to only show transitions without EWSs, it is

more reasonable to calculate EWSs and detect transitions for all variables of interest. In other

words, there is no reason to exclude the variables that have sudden transitions from the

calculation of EWSs, while there are good theoretical reasons to include them (see Appendix

D2 for a simulation study showing the possible consequences of excluding variables with

sudden transitions from EWS calculations).
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In previous studies on clinical EWSs, however, we found that it is very common to exclude

the variables for sudden change detection from the EWS calculation (Table 3). Actually, no

studies that we found in the field of clinical psychology have any shared variables for detecting

EWSs and sudden changes. Some of them used different scales for the two sets of variables. For

example, in the study by Wichers et al. (2016), SCL-90-R was used for detecting sudden

changes, whereas the ESM affect measures were used to detect EWSs. As shown previously, the

ESM affect measures of this dataset did not show a clear transition during the assessment

period, which means that the sudden change was not evident enough from the ESM measures

of the client. The EWSs calculated for those variables are therefore possibly unrelated to the

destabilization before the transition in symptom severity.2 Some studies used a single scale for

both assessments but excluded the variables that were used for detecting sudden changes for

calculating EWSs (Olthof et al., 2020). This kind of exclusion is unnecessary and makes it

difficult to tell if the variables that undergo the transition also show EWSs. In Table 3, we show

several examples in other fields (e.g., physics, ecology, and movement science). Actually, we

did not find any studies in other fields, from which EWS studies in clinical study drew much

inspiration, that separate the variables into two sets, one for transition detection and another

for EWS calculation. Therefore, we suggest future researchers consistently use the same

variable(s) to detect transitions and EWSs.3

2 Wichers et al. (2016) conducted two sets of assessments of the client, one is ESM measures of momentary affects, and
the other is weekly, retrospective measures of symptom severity. Whereas the symptom severity time series showed a clear
sudden change, there was no clear sudden change in the ESM measures. Wichers et al. (2016) claimed that they found
evidence of EWSs in ESM measures, but based on our argument, it is unclear whether it is related to the sudden change in
symptom severity. As the number of assessments of symptom severity is too few in this dataset (15 data points before the
transition) and typically considered unsuitable for EWS calculations, we could not examine whether EWSs were present in the
weekly symptommeasures.

3 There are several methods designed specifically for multivariate EWSs (Weinans et al., 2021) and some of them (e.g.,
PCA-based approach, Olthof, Hasselman, Aas, et al., 2023; Schreuder et al., 2022) have been used for psychological data. Those
methods also have the potential to be incorporated into the theoretical framework we proposed. Although providing
derivations for those methods is out of the scope of the current article, we encourage future research to take this further step.
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Table 3. An overview of the variables used in EWS studies in clinical psychology and other

fields of complex systems.

Same

variable(s)
Examples of empirical studies

Variable(s) of

sudden change
EWS

No (van de Leemput et al., 2014) HDRS-17 or SCL-

90-R

Variance, ACF, cross-

correlations of ESM

measures of four emotions

(Wichers et al., 2016) SCL-90-R Variation, ACF, cross-

correlations of ESM

measures of affect

(Olthof et al., 2020) The item of

problem intensity

in TPQ

The dynamic complexity of

all other variables in the TPQ

(Curtiss et al., 2023) QIDS-SR Variance, ACF, cross-

correlations of 10 items from

the PANAS

(F. M. Bos et al., 2022) ASRM andQIDS-

SR

ACF of 17 items of

momentarymood and

symptoms

Yes

(examples

from other

fields)

(Kramer & Ross, 1985) Light absorption Variance of light absorption

of different experiment trials

(Tredicce et al., 2004) Laser intensity The time that laser intensity

reaches the second phase

(Dakos et al., 2008) Temperature and

deuterium

concentration

ACF of temperature and

deuterium concentration

(Meisel & Kuehn, 2012) EEG channel

activity

Variance of EEG channel

activity

(Kelso et al., 1986) Phasemodulus of

finger movements

Variance of phasemodulus of

finger movements

Note. We did not find empirical studies in clinical psychology that use the same set of variables for

sudden change detection and EWS calculation. Therefore, we included several studies in other fields,

selected from Scheffer et al. (2012), as examples. Abbreviations: HDRS-17, Hamilton Depression Rating

Scale; SCL-90-R, Symptom Checklist 90 Revised; TPQ, Therapy Process Questionnaire; QIDS-SR, Quick

Inventory of Depression Symptomatology-Self Report; ASRM: Altman Self-Rating Mania Scale; PANAS,

Positive and Negative Affect Schedule.
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Determining which variables to measure and how to measure them is a non-trivial

question, especially in the field of ESM (Fried et al., 2022). Take the affect measures used in

Wichers et al. (2016), items such as “I feel down” are in the literature used as a symptom,

emotion, affective state, or mood measure. This blurry distinction in the field of ESM studies

makes it difficult to compare studies and look for converging evidence. A general strategy for

choosing the “right” variable cannot be given but depends on the research question and the

phenomenon of interest. If one is interested in transitions in symptom severity, then symptom

severity should be tracked over time to determine the transition and look for EWS. If the focus

lies on transitions in mood, then mood is what needs to be measured. Once that more

conceptual decision has been made the assessment procedure should be adjusted accordingly,

that is the measurement frequency should match the phenomenon of interest and the

phrasing of the question should be explicit about the type of process the item is tapping into.

More concretely, if the researcher is interested in momentary affect transitions, the

measurement frequency should be dense enough to be able to pick up on transitions at this

rather fast time scale and the question asked should make clear that respondents are asked to

reflect on their momentary affective state (e.g. “I feel down now” rather than “I feel down”).

Another complicating factor in the field of psychology is that different people may interpret

certain questions differently and may vary in their response tendencies (across people and

within people over time). For this issue, an idiographic approach, where patients collaborate

with their therapists to identify personally meaningful items in their lives, represents a

promising strategy (Olthof, Hasselman, Aas, et al., 2023).

Discussion

This article aims to examine the current research methodology in clinical EWSs from a

theoretical perspective. The motivation for this examination comes from the variety of

methods and mixed research findings in this field and also from the nature of theory-based

prediction of EWS studies. In order to find out which study methods and designs are the most

suitable for studying clinical EWSs, we first investigated the theory of EWS for multivariate

systems using a mathematical derivation. From the theoretical investigation, we identified

three key assumptions used during the derivation: (1) the system starts from a point attractor

that disappears after the critical transition, (2) early warning signals appear strictly before the

critical transition, and (3) the same set of variables are involved both in EWSs sudden changes.

Based on those assumptions, we evaluated common practices in recent literature on EWSs in

clinical psychology and found that those assumptions were not always met or examined in

empirical studies. Finally, we provided suggestions for future empirical studies.
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The strength of our approach lies in the close alignment of methods and theory. All the

evaluations and suggestions proposed are grounded in the mathematical derivation of early

warning signals in general multivariate dynamic systems, drawing from the foundation of

bifurcation theory. This imparts a robust framework to guide future investigations. However,

we acknowledge the essential need for a critical examination of our theory's real-world

applicability. In complex, real-life systems, various forms of changes may exist (Ashwin et al.,

2012; Proverbio et al., 2023; Shi et al., 2016). These changes may give rise to different statistical

indicators and require different investigation methods, yet they have remained relatively

understudied within the field of clinical psychology (Cui et al., 2025). We advocate for a more

dedicated exploration of the essence of these transitional phenomena in future research. Only

by shedding light on less-explored facets can we ensure that our statistical advancements yield

practical utility and relevance.

The three key assumptions presented here are certainly not sufficient to guarantee the

detection of EWSs. We highlighted them in this article as we consider them the most salient

ones in the current methodological context of the field and thus warrant specific attention. All

three assumptions are important and do not have trade-off relationships, thus the best

scenario would be to ensure that all three assumptions are met. Practically, however, we can

see that researchers may not always be completely certain, especially for the first and the

second assumptions which are usually bound to the accuracy of visual checks and statistical

inferences. In contrast, the third assumption can be met with certainty by methodological

choice. Therefore, we encourage researchers to always check whether the third assumption is

met, while for the other two, transparent reporting about related procedures and

communicating how likely it is that those assumptions are met might suffice in uncertain

situations.

Besides the conditions discussed in this article, several recent studies have pointed out

other important conditions for EWSs, such that the noise in the system should be Markovian

white noise (Kuehn et al., 2022; Morr & Boers, 2024), that the variables of interest should be

sufficiently sampled with adequate accuracy (Dablander et al., 2023; Helmich et al., 2024), that

both variance and autocorrelation should increase instead one of them (Ditlevsen & Johnsen,

2010), and so on. While a detailed summary of all the important methodological

considerations is out of the scope of the current article, we encourage methodological

researchers to continue the investigation of the applicability of those conditions in the

psychopathology field and search for ways to improve the detection of EWSs, and we
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encourage empirical researchers to actively follow the methodological advances in the field

and apply available assumption checkingmethods in their data.

In this article, we examined whether the current researchmethodology in clinical EWSs is

aligned with the theory, and we provided suggestions according to the theory. EWSs are

essentially theory-based techniques, andwe would like to emphasize the meaning and value of

theory-based prediction. There is no guarantee that a theory-based approach can always

predict sudden changes in clinical trajectories successfully or even have better predictive

power than methods that are not well aligned with theory. It is possible that another

prediction method, for example, a machine-learning-based approach (Wang et al., 2024) or

outlier detection methods (Smit & Snippe, 2023), yields a better prediction precision than

EWSs. Still, the merit of theory-based predictions lies in several other aspects. First, we can

gain a better understanding of the transition process itself and use the results to enhance

theory formation. In EWS studies, for example, we start with the theoretical hypothesis that

sudden gains and sudden losses in clinical psychology can be conceptualized as bifurcations.

From there, we deduct the inference that EWSs should exist with certain assumptions.

Therefore, rigorous examination of EWSs within a strong theoretical framework can provide

evidence consistent or inconsistent with the hypothesis that clinical transitions are driven by

bifurcation tipping. However, because EWSs may also arise in other types of changes, their

presence or absence should be interpreted in combination with additional theoretical and

empirical considerations (see Cui et al., 2025, for detailed discussion), rather than being taken

as definitive evidence. If bifurcation as the change mechanism is supported, some control

parameters may exist for such bifurcation-induced changes. Those control parameters have

important clinical implications because they are the key reasonwhy a client becomes stuck in a

maladaptive phase and, therefore, the key intervention targets. At the same time, they may not

be as salient as the symptoms themselves and thus can be overlooked if the treatment only

focuses on symptoms. Further research may be conducted to determine the underlying control

parameters that determine the stability landscape of the system, which might be related to

stressors or vulnerability in general or more specific factors for an individual or their social,

economic, or cultural environment (Olthof, Hasselman, Oude Maatman, et al., 2023), and find

ways to intervene on the control parameters, thereby benefiting intervention science. Only

knowing that a statistical indicator can predict a forthcoming transition accurately without a

theoretical reason, on the other hand, does not increase understanding of the clinical change

processes. Second, with theory-based predictions, we can understand in which case the

prediction method is generalizable, and how reliable it is. A theory states under which
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conditions a conclusion can be made, whereas statistical predictors do not specify those. In

fact, without a theory, it is questionable if any conclusions based on the sample can be

generalized to a new situation (Cartwright, 2009).

In summary, the investigation of EWSs in clinical settings represents a promising

research direction that has the potential to significantly enhance our understanding of change

mechanisms in mental health and psychopathology and ultimately inform intervention

science. While empirical evidence is crucial, it is equally important to prioritize theoretical

refinement and methodological evaluation within the field. Such efforts will not only drive

theoretical advances but also lay the foundation for a more accurate and responsible use of

EWSs in real-life practice, which is the ultimate goal that researchers in this field aspire to

achieve in the future. By fostering a synergistic relationship between theory, methodology, and

empirical work, we can strive for comprehensive progress and advance the field of clinical

EWSs toward improved well-being for individuals.

Conclusion

EWSs are theory-based prediction tools and require a good alignment of the methodology and

the underlying theory. Based on our investigation of EWS theories and research practices, we

found that the popular research designs in the field do not always align with the theory,

leaving room for improvement. We suggest future research in clinical EWSs should be

designed so that the transition is visually checked with distance plots, the EWS assessment

period is strictly before the transition, and a consistent set of variables is used.
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Abstract

Sudden changes are common in clinical trajectories. While theoretical work in complex

dynamic systems has provided mathematical theories for various types and mechanisms of

change, a concrete application for the field of psychopathology is still lacking. We aim to

bridge this gap by outlining an applied theoretical framework using theoretical concepts of the

natural sciences for the field of clinical psychopathology, also devoting attention to issues and

providing recommendations that are specific to the psychopathology domain. First, the

mechanisms and features of four distinct types of transitions are introduced: bifurcation-

induced tipping (B-tipping), noise-induced tipping (N-tipping), rate-induced tipping (R-

tipping), and noise-induced diffusion (N-diffusion). Those types of transitions differ in the

main cause of the change and data characteristics. To illustrate their application to clinical

phenomena, we present two real-life scenarios using simulated time series. These examples

demonstrate how theoretical types of change may connect to clinical phenomena and

highlight how different types of transitions can co-occur in various subsystems. In the first

example, we show that the mood system and the momentary affect system of a patient with

sudden loss may show B-tipping and N-diffusion at the same time; in the second example, we

show that increasing the stimulus strengthening speed in exposure therapy may lead to R-

tipping, while the therapeutic decision in this context may be caused by N-tipping. Finally, we

lay out possible pathways for determining the appropriate type of transition for future

empirical research, highlighting methods both from dynamic system research and special

opportunities for research in clinical psychology.
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Introduction

Changes in psychopathology are often not a smooth, gradual process. In psychotherapy,

around one-third of patients experience a sudden gain (i.e., abrupt alleviation in their

symptom severity; Hayes et al., 2007; Helmich et al., 2020; Olthof, Hasselman, & Lichtwarck-

Aschoff, 2020; Tang & DeRubeis, 1999; see Shalom & Aderka, 2020 for a meta-analysis), and

patients with sudden gains tend to have better treatment outcomes (Helmich et al., 2020; Lutz

et al., 2013; Shalom & Aderka, 2020). Studies on sudden losses (i.e., abrupt deterioration in

symptom severity) are rare, possibly because people who are about to have an onset or relapse

are seldom included in monitoring studies. Nevertheless, several studies observed sudden

losses in the general population (Eckes & Nestler, 2023; Olthof et al., 2024), in patients

undergoing treatment (Helmich et al., 2020; Lutz et al., 2013), or tapering (Wichers et al., 2016),

suggesting that sudden changes may also be a prominent phenomenon for symptom

worsening.

Despite the high prevalence and clinical relevance of sudden symptom changes, the

mechanisms behind them are still unclear. Empirical studies found no significant predictors

for sudden changes even with large samples and machine learning methods, evidencing that

they cannot be explained by demographical or symptom (severity) measures (Aderka et al.,

2021; Aderka & Shalom, 2021; Zilcha-Mano et al., 2019). One possible approach to explain such

sudden changes comes from the perspective of complex dynamic systems, which

conceptualize sudden changes as critical transitions (Hayes et al., 2007; Olthof, Hasselman,

Oude Maatman, et al., 2023; Schiepek & Tschacher, 1992; Thelen & Smith, 1998). The

interactions of multiple social, behavioral, and biological elements relevant to mental

disorders lead to the emergence of separate attractors or patterns. Those attractors may be

labeled as healthy or pathological, depending on the person’s subjective feeling and level of

functioning in such attractors. Each attractor is locally stable, which means that it is hard to

transition from a healthy state to a pathological state, and vice versa. Under certain conditions,

however, the system may switch from one attractor to another, leading to a sudden change in

the state of the system.

While the notion of a transition from one attractor to another can explain how clinical

change occurs, it does not explain why it occurs. In complex systems, causal explanations of

change are quite different from linear understandings. Rather than searching for isolatable and

single causal factors explaining sudden changes, complex causality acknowledges the large

amounts of interdependent elements that are involved in the transition (Lichtwarck-Aschoff &

van Geert, 2004; van Geert, 2019). Consider the idiom, the straw that broke the camel’s back.
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Even if we can identify this last straw, we cannot say it is the only cause of the breakdown as

each straw has its own contribution. What we can do, however, is to investigate the

mechanisms of change on a more abstract level, looking for a way to conceptualize the essence

of the change. Go back to the camel: although we cannot point to a single straw as the causal

force, we know that the camel’s back broke under the gradually increasing load, whether that

comes from straws, clothes, or whatever, and it is easy to tell that this situation is intrinsically

different from a camel tripped by a rope or pulled by a fast-racing car. Thus, we can still

conceptualize the underlying change mechanism at a more qualitative, abstract level, despite

the large number of causal elements involved at themore detailed level.

In this article, we aim to provide a theoretical introduction to the types of changes in

complex dynamic systems. We first introduce a classification system of critical transitions,

namely B-tipping, N-tipping, R-tipping, and N-diffusion. Some authors have provided

systematic criteria to distinguish transition types with detailed mathematical underpinnings

(e.g., Proverbio et al., 2023; Shi et al., 2016; Thompson & Sieber, 2011a). We have chosen a more

intuitive way, by using ball-and-landscape illustrations (which have been used in many

previous studies in natural sciences, e.g., Lamothe et al., 2019; Proverbio et al., 2023; Scheffer et

al., 2009;Waddington, 1966, as well as in psychology, Cui et al., 2023; Heino et al., 2022; Olthof,

Hasselman, Oude Maatman, et al., 2023), together with simulations, to explain the different

transitions types. We focus on the conceptual differences of the transitions in the main text,

leaving simulation details to Appendix E1 and the reproducible code (available at

https://osf.io/4jaqk/). After that, we use several clinical scenarios to illustrate why different

types of transitions may happen in the same system depending on the variables and levels of

interest. We will also explain why setting clear boundaries for a system of interest is necessary

for clarifying the research question about transitions and end with a roadmap and several

directions for future research designs.

Types of Transitions

In this section, we introduce the basic types of critical transitions, summarized in Table 2.

Readers who are not familiar with dynamic systems theory may refer to Table 1 for the

definitions of some key terminologies.
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Table 1. Definition of key concepts in the complex dynamic systems theory.

Concept Definition

Complex dynamic system A system that consists of a large number of elements that interact in a

non-simple way and evolve over time, such that even if we know the

properties of each individual part and interaction, it is still non-trivial

to infer the property of the whole (Simon, 1962).

State The property of a system at a certain time point, characterized by

relevant variable values.

Parameters The values or conditions that define the exact form of the dynamic

interactions of a system.

Noise The internal or external forces that affect a system’s state in an

essentially randomway, in contrast to deterministic forces that are

predictable given the system’s state (Ashwin et al., 2012; Forgoston &

Moore, 2018).

Attractor A state or a collection of states that the system tends to evolve towards

frommany initial starting points (Milnor, 2006).

Phase1 (or basin) A region in the state space that is close enough to an attractor. If the

system is in it, the system has the tendency to go back to the attractor

(Cui, Lichtwarck-Aschoff, et al., 2023; Milnor, 2006).

Critical transition (or

tipping)

The phenomena that a dynamic systemmay abruptly transition from

one phase to another in a relatively short period (Ashwin et al., 2012;

Scheffer et al., 2009).

Ball-and-landscape

metaphor

A simplification of certain complex dynamic systems to represent the

stability of different states with a low-dimensional, generalized

potential function (Cui, Lichtwarck-Aschoff, et al., 2023). In such a

metaphor, the position of the ball represents the state of the system,

the altitude of the ball represents the stability2 of the system, and the

landscape represents the deterministic force of the system.

Note. 1 Alternative meanings of the term “phase” exist (e.g., in “phase space”). In this article, we

follow the definition provided here and use the word “phase” to refer to a set of regions. 2 Here

by “stability”, we mean thermodynamic stability instead of kinetic metastability. The latter is

better represented by the barrier height on the landscape (see Moore et al., 2006).
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Table 2. Summary of the features of three transition types.

Transition type Main cause Predictability

B-tipping Destabilization of the current

attractor

Yes (under conditions)

N-tipping Sudden, large perturbation No

R-tipping Moving rate of the attractor

exceeds the ability of the system to

follow

Yes (under conditions)

N-diffusion Constant, large perturbations N/A (always happening)1

Note. 1 In N-diffusion, the system constantly transitions between alternative basins. Therefore,

it is notmeaningful to predict whether a transition is about to happen.

The first possible mechanism for sudden changes is destabilization, which is often called

bifurcation-induced tipping, or B-tipping (Ashwin et al., 2012, 2017; Boettiger & Batt, 2020;

Kuehn, 2011; Thompson & Sieber, 2011b). In Figure 1 we illustrate B-tipping induced by a fold

bifurcation, where the system has two basins at the beginning but one loses stability later,

making the system transition to the alternative basin. We show the time series together with

ball-and-landscape plots that represent the stability of the system. In the ball-and-landscape

plots, the two basins on the landscape represent the two alternative phases of the system

(healthy versus pathological). The deeper the basin, the more stable the system is. The shape of

the landscape is determined by one or more parameters that are called control parameters.

When the control parameters change gradually, the depth of the basin decreases over time, up

until a certain point at which the basin does not exist anymore. This point is called the

bifurcation point at which the ball abruptly transitions to the other basin, representing a

sudden transition. Note that in real-life situations, there is always (small) noise present in the

system, causing the system’s state to slightly fluctuate around the local minimum.

Nevertheless, the noise is weak enough in B-tipping, hence the bifurcation is the main reason

for the transition.

B-tipping has prompted the line of studies of early warning signals in psychopathology

(e.g., Bos et al., 2022; Helmich et al., 2021, 2022; Olthof, Hasselman, Strunk, et al., 2020; van de

Leemput et al., 2014; Wichers et al., 2016). Early warning signals (EWSs) refer to a set of

statistical parameters, such as increasing variance and autocorrelation, that appear during the

destabilization process and can be used to predict a sudden change (Cui et al., 2022; Gilmore,

1993; Scheffer et al., 2009, 2012; Thom, 1975; Zeeman, 1976). Because the previous attractor of

the system becomes less stable, disturbances of the system by random noise will move the
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system further away from the attractor point (increasing variance), although still in the basin,

and it will take longer to return (increasing autocorrelation). EWSs bear important clinical

promises because if a sudden change can be predicted precisely, practitioners may be able to

perform just-in-time interventions to facilitate desired and prevent undesired changes (Granic,

2005). The initial enthusiasm is somewhat damped because of the many mixed results found

in empirical studies (Helmich et al., 2024). Several explanations may account for this, such that

the research methodology has potential issues, that the type of bifurcation does not involve

EWSs, or that the clinical change process corresponds to another type of transition (Boettiger

et al., 2013; Boettiger & Hastings, 2012; Cui et al., 2022; Dablander et al., 2022; Dakos et al.,

2015; Ditlevsen & Johnsen, 2010; Evers et al., 2024; Kuehn et al., 2022; Morr & Boers, 2024;

Proverbio et al., 2022). Simulation examples of other bifurcation types are provided in

Appendix E2, and wewill introduce other types of transitions in the next paragraphs.

Figure 1. A simulated time series and ball-and-landscape illustrations for B-tipping. The fold

bifurcation is used in this illustration. The ball-and-landscape illustrations represent the

stability of the system at certain time points. Various balls are shown on each landscape to

represent the variability of the system’s state under noise.

The second type of change is noise-induced tipping, or N-tipping (Ashwin et al., 2012;

Boettiger & Batt, 2020; Forgoston &Moore, 2018; Ritchie & Sieber, 2017; Van den Broeck et al.,

1994). It represents the case where the stability of the system does not change, but the state of
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the system moves from one attractor to another due to external or internal noise. A simulation

and ball-and-landscape illustration of N-tipping is shown in Figure 2. It is difficult to predict

N-tipping before it happens because there is no landscape change before the transition, hence

no EWSs can be detected. In other words, there was no destabilization of the attractor state

prior to the event but the impact of the sudden event is large enough to let the system jump out

of the original basin and transition into an alternative basin. Theoretically, this alternative

phase must already exist for N-tipping to occur, which is also hard to see from the time series

before the tipping. But the system will visit a region that has rarely been visited before during

the sudden transition, which can be taken as a signal that a sudden change is taking place (Shi

et al., 2016).

Figure 2. A simulated time series and ball-and-landscape illustrations for N-tipping. The ball-

and-landscape illustrations represent the stability of the system at certain time points. Various

balls are shown on each landscape to represent the variability of the system’s state under noise.

The third type of tipping is the rate-induced tipping, or R-tipping (Ashwin et al., 2012,

2017; Ritchie et al., 2023; Ritchie & Sieber, 2017). It represents the case in which the stability of

the system does not change, but the position of the attractor changes so quickly that the state

of the system cannot catch up with the (previous) attractor. A ball-and-landscape illustration

of R-tipping is shown in Figure 3. R-tipping also has EWSs, such as increasing variance and

autocorrelation before the tipping, but they do not occur as early as EWSs for B-tipping and

have different implications compared to B-tipping (Ritchie & Sieber, 2016). In B-tipping, the
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EWSs before the transition represent the decreasing stability of the former phase; in R-tipping,

the increasing variance and autocorrelation show that the system is trying to catch up with the

former phase before it transitions to the new phase, leaving the stability of the former phase

unchanged.

Figure 3. A simulated time series and ball-and-landscape illustrations for R-tipping. The ball-

and-landscape illustrations represent the stability of the system at certain time points. The ball

on each landscape represents the real-time state of the system.

Finally, there is a type of situation that does not involve a single transition from one

attractor to another, but frequent transitions throughout the whole state space due to a high

level of noise. The stability of states then manifests as the probability density: the more stable

the state, the higher the probability density. We call this type of situation noise-induced

diffusion, or N-diffusion, as there is no single identifiable tipping point.1 A ball-and-landscape

illustration of N-diffusion is shown in Figure 4. Because there is no single transition in N-

diffusion, there are no sudden transitions to be predicted. Nevertheless, in a system with high

levels of noise, the property of the whole state space can be retrieved from the time series,

allowing for the estimation of the landscape and the number of phases for the system (Cui,

1 The phenomenon we are discussing is referred to as distribution transition or ergodic behavior in previous literature
(Proverbio et al., 2023; Shi et al., 2016). In the current article, we have opted to use the term “N-diffusion” to emphasize that it
does not involve a single shift in the time series, and to maintain clarity and avoid terminology that might be less familiar to
our target audience.
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Lichtwarck-Aschoff, et al., 2023; Livina et al., 2010). If a new attractor appears, the system can

also quickly move to the new basin and travel back and forth, a phenomenon sometimes

referred to as “flickering” (Dakos et al., 2013; Scheffer et al., 2012).

Figure 4. A simulated time series and ball-and-landscape illustrations for N-diffusion. The

ball-and-landscape illustrations represent the stability of the system at certain time points.

Various balls are shown on each landscape to represent the variability of the system’s state

under noise.

In sum, these four types of transitions correspond to three main conditions under which a

dynamic system transitions to an alternative phase: (1) decreasing stability of the original

phase, (2) noise, and (3) positional change of the original phase. In idealized cases, only one

condition is present, being responsible for the transition. Thus, in our idealized cases above, we

kept the landscapes and dynamic functions equal and only varied the parameters controlling

the speed with which the landscape changes and the strength of noise. These simulations

demonstrate that the type of transition is determined by the parameters that are relatively

more dominant (see Table E1 in Appendix E1). It is important to emphasize, however, that in

real-life scenarios, those conditions may often co-occur, leading to transitions that may exhibit

mixed characteristics of different transition types. For example, if the stability of a phase has
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already decreased but has not become entirely unstable yet, strong perturbations (i.e. noise)

can more easily tip the system to another phase. In this case, the system may experience a

mixture of B- and N-tipping. If the stability of the system slowly changes, while the noise in the

system is strong enough to cause an N-diffusion, we may observe the system’s distribution

changes accordingly (Shi et al., 2016). Another complicating factor is that the transition types

cannot be differentiated purely on empirical grounds but what can be observed in the data

strongly depends on the research focus and interest (i.e., how the system and its boundaries

are conceptualized). A point that we will discuss in the next section.

Transition Types in Clinical Psychology

Conceptually, it is not difficult to differentiate between the types of transitions in a

psychological context: B-tipping may happen when a slowly changing process leads to a

sudden change in the symptom level; N-tipping is triggered by an unforeseeable external event;

R-tipping arises when a developmental or environmental process requires a rapid adjustment

of the system to maintain stability, but the change occurs too rapidly for the system to adapt;

N-diffusion is likely to happen when the system is highly variable and frequently switches

between different states. However, difficulties may arise when we link those metaphorical

illustrations to real-life scenarios because there are often multiple ways to set the boundary of

the system. We explain this with two concrete clinical scenarios, and after that, reflect on the

complexity of classifying real-life scenarios at a more abstract level.

First Scenario:Mood and Affect in Depression Relapse

Mood and affect are closely related, yet different. Whereas mood is more stable, reflecting a

more sustained emotional climate, affect is characterized by fluctuating changes, responding

to daily events and variations (Alpert & Rosen, 1990). Major depressive disorder is

characterized by persistent lowmood (American Psychiatric Association, 2022) not necessarily

the absence of positive affect. But individuals with depression do differ in the distributional

properties of their affect compared to healthy individuals, sometimes showing bimodality

(Hosenfeld et al., 2015; Loossens et al., 2020; Rottenberg, 2005;Watson et al., 1988). Due to the

differences between the mood and affective system, it is possible that the affective system of a

person undergoes N-diffusion, while the same person’s mood system may experience B-

tipping.

Take the specific example where a patient in the tapering procedure for antidepressants

had a sudden loss in the severity of symptoms (Kossakowski et al., 2017; Wichers et al., 2016;

Figure 5). Assuming that the sudden transition in depressive symptoms (mood system) is led
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by B-tipping, a possible explanation of the mechanism can be the slowly changing

neurotransmitter concentration during the tapering procedure, destabilizing the healthy

phase and strengthening the depressive phase. At a certain point, the healthy phase is not

stable enough anymore, which leads to a relapse, a sudden transition to the depressive phase.

However, if we look at the affective system, which is more variable than the mood system, we

may reach a different conclusion. In Figure 5, we can clearly see that even before the relapse,

the person feels down occasionally. Thus, although the distribution of the momentary affect

changed slightly before and after the sudden loss, it did not show a clear transition, resembling

the characteristics of N-diffusion.

Figure 5. The general mood (depression) and momentary affect (feeling down) of a patient

who had a sudden loss in the tapering process. Data are retrieved from Kossakowski et al.

(2017).

We simulated the time series according to this scenario, where we used x to represent the

depressive mood and y to represent the negative affect. We set the noise level in the variable x

weaker than in the variable y and let the stability of the system gradually change along the x-

axis so that x undergoes B-tipping and y undergoes N-diffusion (Figure 6). The distribution of y

can be influenced by the value of x, that when x is higher, y is more likely to be high. The

detailed simulation settings are available in Appendix E1. We consider this to be a realistic

relationship between general mood and momentary affect. Comparing the simulated data
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with the real-life dataset (Figure 5), we see clear similarities. The variable depression is closer

to x and contains a clear transition, although it contains more fluctuations than the simulated

variables. The variable “feeling down” is closer to ywithmuch stronger fluctuations. Therefore,

we consider the simulated transition types one of the possible explanations for the observed

change. The identified type of transition then depends on the relative variability of the

variables that researchers are focusing on. If researchers are interested in the slower changing

processes (e.g., general mood), they will observe B-tipping; if researchers are interested in the

faster changing processes (e.g., momentary affect), they will observe N-diffusion combined

with a stability change.2

Figure 6. Simulated time series, where x experiences B-tipping and y experiences N-diffusion.

The ball-and-landscape illustrations represent the stability of the system at certain time points.

To illustrate the landscape with two variables, we use color to represent the altitude of the

landscape, where dark blue represents deeper, more stable positions on the landscape, and

light yellow represents higher, less stable positions on the landscape. Various balls are shown

in each landscape to represent the variability of the system’s state under noise. The landscapes

are also presented as zoomed-in subfigures to enhance readability. Each inset panel (labeled

(a)–(g)) in themain figure directly corresponds to its enlarged version on the right.

2 This theoretical analysis also has important implications for EWS research, calling into question the previous
conclusions on EWSs in this specific dataset, where the authors used the variance and autocorrelation of the affective variables
as EWSs (Wichers et al., 2016). As the data of the affective variables have the fingerprint of N-diffusion rather than B-tipping,
their (change in) variance and autocorrelations should not be taken as EWSs but may be due to the distribution change
associated with the N-diffusion (e.g., when the depth of the two basins becomes closer, the variance and autocorrelation of the
N-diffusion variable can also increase). A detailed discussion of EWS research methodology is out of the scope of the current
article, and we refer interested readers to Cui et al. (2022).
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Second Scenario: Gradual and Intensive Exposure Therapy

Exposure therapy is frequently used in the treatment of phobias and anxiety disorders (Craske

et al., 2008; Foa & Kozak, 1986; Foa & McLean, 2016; Powers et al., 2010). Multiple types of

exposure therapy are available, such as gradual exposure (also known as systematic

desensitization) where the strength of the stimuli slowly increases, and intensive exposure

(also known as flooding) where the strength of the stimuli rapidly increases to the maximum

(Schumacher et al., 2015). The findings about the relative effectiveness of the two approaches

are mixed (Kazdin & Wilcoxon, 1976), with some studies reporting a clear superiority of the

intensive approach (e.g., Boulougouris et al., 1971), and others reporting a much higher relapse

rate of the intensive approach (De Moor, 1970). Relatedly, a recent study found that gradual

exposure in small steps is more effective than gradual exposure in large steps, although

patients in the large-step group reached higher levels in the fear hierarchy (de Jong et al., 2023).

To illustrate the possibility of R-tipping, we simulated a scenario where a therapist

initially uses gradual exposure, and later changes to intensive exposure, which exceeds the

patient’s adjustment ability and later leads to a relapse (Figure 7). In the simulation, �

represents the current strength of the stimulus, a represents the speed of increase in the

strength of the stimulus, and x represents the patient’s tolerance to a specific fear-evoking

stimulus. At the beginning, a is small, and � increases slowly, representing the gradual

exposure. At a certain point, the therapist switches to intensive exposure. The detailed

simulation settings of this scenario are also available in Appendix E1. At first, the person’s

tolerance level is only stable at a low value, representing high levels of anxiety. During the

treatment, a new form of reaction to the stimulus emerges (Foa & McLean, 2016) and gets

strengthened, which means that the patient can increasingly tolerate the threatening object.

This is shown as a new basin on the landscape that gradually moves towards high tolerance.

The state of the patient (i.e., the actual level of tolerance of the patient) moves along the new

basin in the beginning. After the therapist switches to an intensive approach, however, the

patient’s tolerance level, although initially showing improvement, cannot keep up with the

moving speed of the new basin, which leads to a return to the previous basin, manifesting as a

relapse (De Moor, 1970). Here, the high speed of the basin’s movement is the main cause of the

transition, which means x experiences R-tipping. Different from the previous example, the

position of the previous basin does not change, but the position of the new basin with higher x

moves quickly. Nevertheless, it is still R-tipping as the fast-moving speed of the new basin is

the main reason for the transition.
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Similar to the previous scenario, if we look closer into this one, we can see that another

variable of the system may also experience another type of change because the therapist

switching to an intensive approach is also a transition in itself. Several potential causes may

drive the therapist’s decision to switch, including the patient’s factors and the therapist’s

experience and evaluation (van Minnen et al., 2010). In some cases, the transition in exposure

techniques may be a predictable B-tipping, such as when a therapist adjusts their technique

based on the patient’s recovery speed, and over time, realizes that the progress is slower than

expected and decides to switch to an intensive approach. But it is also possible that the

switching is caused by some random event (i.e. noise), such as when a therapist unexpectedly

meets a colleague who advocates for the intensive approach and persuades them to adopt it. In

this case, we would observe the therapist’s switch as N-tipping. Here, we show an example of

N-tipping in the simulated time series (a in Figure 7). Taking together, in this clinical scenario,

the system exhibits R-tipping when the focus is on the patient’s tolerance level, and N-tipping

if the focus shifts to the therapist’s decision. This illustrates that different levels of the system

may show different types of transitions at the same time.

Figure 7. Simulated time series, where a experiences N-tipping and x experiences R-tipping.

The ball-and-landscape illustrations represent the stability of the system at certain time points.

Two sets of landscapes are shown in the figure, representing the stability of a (below) and x

(above), respectively. The landscapes of x are also presented as zoomed-in subfigures to

enhance readability. Each inset panel (labeled (a)–(c)) in the main figure directly corresponds

to its enlarged version on the right.
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Reflections on Linking Transition Types to Clinical Phenomena

The two examples above showed that the type of transition is not bound to a specific real-life

phenomenon, but more to a specific subsystem in this phenomenon. This is mainly because

psychological phenomena are nested across levels and consequently the boundary of the

system can be defined in multiple ways (Hasselman, 2023; Noble, 2011). Let us take a closer

look at the ball-and-landscape metaphor. This metaphor is useful not only because of its

intuitive appeal, but also because it delineates the difference between variable, force, and noise

(see Table 1), which is crucial in understanding the types of transitions. The ball represents the

state of the system, and the landscape represents the deterministic dynamic function of the

system – it tells us in which direction the system is likely to move. Noise is all other forces that

influence the state of the system. Thus, if we use one variable � to represent the state of the

system or the position of the “ball”, then the deterministic part of its dynamic function, for

example,
d�
d�

=− � , shows the deterministic force on the system which can be represented by

the landscape3. The ball may change its position (i.e., value) without changes in the dynamic

function. In our example, � can be 0, 1, -1, under the same dynamic function, which means that

the position of the ball changes, but the landscape does not. When the dynamic function

changes, however, it means that the landscape changes. In our example, if nowwe have
d�
d�

=−

2� , we have a steeper valley on the landscape because there is a stronger force pulling the

system to the original point. We can also add a noise term to the function,
d�
d�

=− � + �. Here,

the noise term, �, cannot be inferred from the landscape. Its force on the state of the system can

be along the descending direction of the landscape, or it can be the opposite.

So far, it seems that there is a clear difference between the dynamic function and the value

of a variable. However, changing the dynamic function of � can almost always be expressed

with the value of another variable, which is called parameterizing a function. We can write
d�
d�

=

− ��, and change the value of � to change the dynamic function of �. If the aim is to model a

real-life system, allowing the dynamic function to change is important because the

deterministic dynamic function (i.e., the stability landscape of the system) may change due to

changes in the environment of the system. Therefore, the parameter value (i.e., the shape of

the landscape) also represents the environmental influences that are external to the system.

Further complications will appear if we let � also have its own dynamics and let it be

3 Strictly speaking, the dynamic function has to specify a gradient system to make sure the force can be represented as a
landscape. In a one-dimensional system, this always hold, but it may not hold for multivariate systems. In those cases,
generalized potential landscapes are available. A detailed analysis of this issue is out of the scope of the current article. We
refer the interested readers to Cui, Hasselman, et al., (2023) and Cui, Lichtwarck-Aschoff, et al. (2023).
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dependent on � . This makes the boundary between variable and parameter much fuzzier.

Unfortunately, this complication is almost always present when we seek to analyze (sudden)

changes in clinical psychology (Eronen, 2019). In the first example scenario above, the

patient’s momentary affect can be taken as the variable � , and the patient’s mood as the

parameter � . The patient’s general mood influences the affective dynamics, but at the same

time, the mood of the patient is also influenced by the neurotransmitter concentration,

altering during the tapering. Affect and mood could therefore be taken together, constituting

the state space of the system, and let their joint dynamics be affected by some other factor (i.e.

neurotransmitter levels) outside this system. Similarly, in the second scenario, if we take the

patient’s tolerance to stimuli as the system, it is influenced by the switching in exposure

technique; if we take both the patient’s state and the type of exposure together as the system, it

can also be influenced by external factors, such as colleagues’ recommendations. The nesting

does not stop here, because patients and therapists in the region may also form a larger system,

that can be collectively influenced by higher-level factors, such as the local policy.

Importantly, we argue that different ways of setting the boundary of the system are

simultaneously correct because the difference in the state of the system and the dynamic

function of the system depends on the definition of the object system, which can be arbitrarily

chosen depending on the research question. Once the boundary of the system is determined,

there will be a clear difference between the state of the system and its environment. Note that

this arbitrariness does not stem from a particular ambiguity in psychological science, it is a

common problem also in natural sciences4. Differentiating the system and environment in no

way denies the interdependence between the two. On the contrary, it is well accepted that

psychological systems are open systems that constantly exchange energy and information

with their environment (Bronfenbrenner, 1979). Clarifying the boundaries is necessary to

actually link the theoretical types of transitions to specific psychological phenomena.

Furthermore, analyzing a phenomenon at different levels does not yield contradictory

conclusions – they will yield conclusions at different levels that complement each other.

Roadmap for Future Research

Studies of clinical sudden changes started with clinician’s observations and routine outcome

monitoring across treatment sessions (Aderka et al., 2012; Hardy et al., 2005; Lutz et al., 2013;

4 In physics, the object system is also arbitrarily chosen depending on the research question. Imagine a person standing
within a big box, trying to push one side of the box to make it move. Taking the person as the object system, the hands of the
person experience an equal and opposite force from the box, according to Newton’s Third Law. If, however, we take the box
and the person together as the object system, the system does not experience an external horizontal force; thus, its center of
mass does not move. There is no right or wrong for those two choices, and both choices lead to valid conclusions. What differs
is the focus of the question and the problem to be solved.
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Shalom & Aderka, 2020; Stiles et al., 2003; Tang & DeRubeis, 1999). Since then many

researchers have investigated sudden changes using intensive longitudinal assessment

methods (Helmich et al., 2020; Hulsmans et al., 2024; Olthof et al., 2024; Olthof, Hasselman,

Aas, et al., 2023; Olthof, Hasselman, & Lichtwarck-Aschoff, 2020; Wichers et al., 2016, 2020).

Yet, studies specifically designed to identify the type of transition are still sparse. In this

section, we took inspiration from other fields to provide empirical guidance to identify the type

of transitions in clinical psychology. A summary of the possible directions is presented in Table

3.

Table 3. Summary of the possible directions in determining the type of transition in clinical

psychology.

Direction Advantage Disadvantage

Repeated

controlled

experiments (in

vivo or in silico)

Provide strong evidence of the type

of transition and rule out alternative

explanations.

Difficult to implement

experiments or validate

computational models.

Detecting EWSs More feasible, only the variables

need to be monitored, and can be

examined in amore natural setting.

Difficult to rule out alternative

explanations, strong

theoretical or supplementary

empirical evidence needed.

(Semi-)

qualitative

approach

Make better use of the participants’

own reasoning and can acquire

information from time scales that are

unfeasible for real-timemonitoring.

Retrospective bias is likely to

present, the participants may

not be able to understand or

answer some difficult

questions.

The first general approach is to track changes in control parameters and state variables

simultaneously to investigate the influence of parameter changes on the sudden change of the

state variables, preferably using experimental manipulations. Many previous studies applied

this approach using numeric simulations, which although not empirical, can still shed some

light on possible empirical manipulations. For example, Shi et al. (2016) showed that when

continuously changing a control parameter, B-tipping only happens at a late time point where

the bifurcation point is almost reached, N-tipping happens probabilistically during a long time,

and for N-diffusion, the system reaches the alternative basin as long as the new basin appears.
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Similarly, if the transition only happens when the parameter changing speed is above a

threshold, not bounded to a specific parameter value, then the system is likely to experience R-

tipping (Ashwin et al., 2012; Ritchie et al., 2023).

The difficulty underlying this approach is that it requires the researcher to be able to

manipulate the control parameter of the system, making sure that it changes in a certain

direction and speed, and be able to replicate the experiments multiple times to rule out chance

possibilities. In natural sciences, this approach is often applied to highly modellable and

controllable small-scale systems. For example, Kramer and Ross (1985) described a chemical

system that is bistable given a certain range of incident laser power. The authors recorded the

chemical concentration along the process of increasing or decreasing laser power. Because

they observed a clear transition in chemical concentration at a later stage of parameter change,

which was preceded by critical slowing down, they concluded that the system experiences B-

tipping. In psychology, Haken et al., (1985) have conducted similar work for bi-manual

coordination, where changing the movement speed can lead to transitions between in-phase

and counter-phase movement patterns. Such controlled experiments are rather difficult in a

clinical context. The tapering of medication (Wichers et al., 2016) and exposure therapy (Foa &

Kozak, 1986) may represent possibilities, but those experiments cannot be exactly replicated,

which is a classical problem in psychological measurements (Lord & Novick, 1968). Lab

experiments, which are common in the field of computational psychiatry, may provide

conditions for control and replication, but whether lab experiments translate to clinically

relevant transitions is questionable (Hitchcock et al., 2022; Seriès, 2020).

Another possibility involving experimental manipulation is the development of formal

dynamic models (Haslbeck et al., 2022; Robinaugh et al., 2021). Just as in ecological models

(e.g., Ashwin et al., 2012; Boerlijst et al., 2013; Kuehn, 2011; Weinans et al., 2019), if we have

enough evidence to believe that a formal dynamic model is a sufficient representation of actual

systems in real life, we can analyze the model through simulations or analytically to

understand the type of transition. A substantial difficulty in this direction is that for the formal

dynamic models in psychology, the bottom-up building blocks (i.e., the basic function forms

and relationships among model elements) are not as theory-informed and empirically

validated as in natural sciences. Formal dynamic models are often evaluated by how they

resemble real-life transitions, which may induce circular arguments. Therefore, to proceed in

this direction, we require stronger support for the validity of formal dynamic models.

The second general approach relies on EWSs as a way to distinguish between B-tipping

and N-tipping. For example, early work used the existence of EWSs as evidence that B-tipping
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is widely prevalent (Dakos et al., 2008; Scheffer et al., 2009, 2012). Ditlevsen and Johnsen

(2010) found no EWSs before the Dansgaard-Oeschger events (a type of rapid climate change),

thus concluded those events are probably noise-driven. Similarly, Guttal et al. (2016) found

only rising variance but no rising autocorrelation before financial crushes, and suggested the

crushes were due to N-tipping led by increasing noise. This approach is clearly more feasible in

empirical studies, but an often raised issue is that the relationship between EWSs and B-

tipping is not one-to-one, as EWSs may appear without bifurcations, and bifurcations may

appear without EWSs (Boettiger et al., 2013; Dablander et al., 2022). One possible solution for

this issue is to back up the empirical tests of EWSs with a clear theoretical foundation and

descriptive analysis to exclude other types of transitions. For example, if we know that a

system departs from a point attractor, the noise is present in the direction of the change, and

the stability of the system has monotonic changes, then the system is likely to show EWSs if

the transition is B-tipping (Cui et al., 2022). On the other hand, if the noise in the system seems

to be so strong that N-diffusion is likely to happen, or if there are clear theoretical arguments

to assume that the system departs from a circular attractor (e.g., in the case of bipolar

disorder), or if R-tipping is a possible explanation of the transition, EWSs should not be taken

as evidence of B-tipping.

The third general approach is that we also see specific opportunities unique to the field of

psychology. A key difference between psychology and other disciplines is that our research

objects, human participants, have the ability to reason and conceptualize their own lives

(Rozin, 2001). Therefore, it may be possible to ask participants counterfactual questions and

gain information from there (Pearl &Mackenzie, 2018). For example, after a transition, wemay

conduct interviews guided by the questions in the decision tree shown in Figure 8 or embed

those questions in an ESM assessment routine. This (semi-)qualitative approach is also

advantageous as it can assess the processes that are too fast or too slow for traditional ESM

designs. For example, Bossenbroek et al. (in preparation) interviewed youngsters in residential

youth care and identified various significant transitions in their lives. Some said that the

impact of certain stimuli heavily depended on their current state, i.e., the impact was different

in other periods of their lives. Information on such a time scale cannot be assessed with here-

and-now ESM designs. Of course, such an approach also comes with limitations, such as

retrospective bias, researchers’ bias, and participants’ limited ability of counterfactual

reasoning and to remember and evaluate past events (Blome & Augustin, 2015; Morrow, 2005).

Nevertheless, the (semi-)qualitative approach still represents a valuable direction.
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Figure 8. A decision tree to hypothesize about the type of transition using a semi-qualitative

approach. Exact questions may bemodified according to the specific research question.

Conclusion

Critical transitions in dynamic systems can be classified into four main categories: B-tipping,

N-tipping, R-tipping, and N-diffusion, and possible combinations of those. Different types of

transitions are triggered by different causal mechanisms and result in different dynamic

patterns in time-series data. Clinical changes in real life involve a large number of variables on

multiple levels, with different variables undergoing different types of transitions. The type of

transition can therefore not be defined for the change as a whole but is specific to the variables

of investigation. To empirically examine types of transition, researchers may apply one of the

following directions: repeated controlled experiments (in vivo or in silico), detecting EWSs, or

(semi-) qualitative approaches. Those directions each have advantages and disadvantages,

with some being more accurate and rigorous, and others being practically more feasible. We

encourage future researchers to continue on this avenue enhancing our understanding of

clinical change processes.
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Abstract

Nonlinear relationships among variables play an important role in psychological modeling and

understanding changes over time from intensive longitudinal data (ILD). Most methods focus

on linear models, with a few exceptions developed for specific nonlinear interactions or

general system dynamics. Methods considering multiple possible nonlinear relationships

among all variables remain sparse, hindered by challenges like overfitting and interpretation

difficulties. This article examines the feasibility of applying such a method to psychological

ILD, using the Regularization Algorithm under Marginality Principle (RAMP) alongside a local

linearization method for interpretation. We evaluated its performance with simulated and

empirical datasets using classification metrics, information criteria, and cross-validation.

Results show this method often requires long series for satisfactory performance. While

information criteria favor the nonlinear method in empirical datasets, cross-validation favors

simpler AR models. Nonetheless, these challenges are comparable to those in linear

idiographic modeling. Clear evidence of nonlinear relationships among variables supports the

value of this method for exploratory studies. We developed an R package, quadVAR, as an

implementation of this method.
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Introduction

Dynamics, how variables change over time, is at the heart of many psychological inquiries,

such as development, affective, and treatment processes (Bogartz, 1994; Boker & Moulder,

2023; Granic, 2005; Hamaker et al., 2015; Myin-Germeys & Kuppens, 2021). Empirical studies

have observed various complex behaviors of the system, such as multistability, sensitive

dependence on the initial condition, and sudden changes (Granic et al., 2018; Hayes et al., 2015;

Loossens et al., 2020; Moulder et al., 2022; Olthof et al., 2020, 2023; Richardson et al., 2017;

Tang & DeRubeis, 1999). Those behaviors are not possible to be generated from linear

dynamics, as linear interactions among variables can only create one equilibrium point (Cui et

al., 2023; Haslbeck et al., 2022; Haslbeck & Ryan, 2022; Hoekstra et al., 2024; Sayama, 2015).

Therefore, to gain a better understanding of psychological dynamics, it is essential to move

beyond linear statistics and start investigating the nonlinear part of dynamic interactions.

In the cross-sectional context, it is not a new topic to go beyond linear models and

investigate nonlinear relationships among variables (Cohen et al., 2003; Failenschmid et al.,

2025; Guastello, 1982; Kroc & Olvera Astivia, 2023; Rigdon et al., 1998). Although linear

methods (e.g., Pearson correlation, linear regression) are common to perform and provide

straightforward interpretations, they assume a stable relationship of variables throughout the

variables’ range. This assumption is often unrealistic, as many relationships in psychology are

known to be nonlinear, for example, the floor and ceiling effects (Liu &Wang, 2021; L. Wang et

al., 2008), or the inversed-U curve for arousal and performance (Yerkes & Dodson, 1908). In

those cases, it is better to use a nonlinear technique instead for more realistic inferences (Kroc

& Olvera Astivia, 2023). Such nonlinear techniques may include, for example, polynomial

regression, which adds nonlinear terms to linear regression, and nonparametric methods, such

as splines and local regressions.

A challenge in dynamic modeling, however, is the balance between the number of

variables, the large number of nonlinear forms they may constitute, and the relatively small

number of data points usually available in psychological time series. The dynamics of

psychological variables are often investigated using intensive longitudinal data (ILD), assessed

with experience sampling methods (ESM, also known as ecological momentary assessment,

EMA, or ambulatory assessment, AA; Kalokerinos et al., in preparation; Myin-Germeys &

Kuppens, 2021; Robinaugh et al., 2020; A. A. Stone et al., 2023). Those data rely on the self-

reports of experiences, which can be evaluations of internal mental or emotional states, or

evaluations of the experience of external events. The number of assessments per participant in

ESM studies is mostly around a hundred (Vachon et al., 2019). Estimating complex models



Chapter 8

172

from limited data points can lead to severe overfitting issues. Previous studies have shown that

even linear VAR models may be overfitting and do not provide more accurate predictions than

single-variate AR models in typical psychological settings (Bulteel et al., 2018; Dablander et al.,

2020; Mansueto et al., 2023). Adding a large number of nonlinear terms without proper

regularization will only make the overfitting problemmore severe.

Whereas the majority of ILD modeling work focuses on linear models (e.g., Bringmann et

al., 2013, 2015; Epskamp et al., 2018; Hamaker et al., 2018; Jordan et al., 2020; Robinaugh et al.,

2020), there are several nonlinear methods available. Several methods focus on nonlinear

trends over time (Bringmann et al., 2017; Failenschmid et al., 2025), which is an important

pathway to tackle nonlinear phenomena in the time series, but not directly relevant for our

aim as they do not explicitly model the relationships among variables. Some methods aim to

describe more complex forms of nonlinear interactions from data. The output of those

methods is often the attractors in the original or reconstructed state space. The Hankel

alternative view of Koopman analysis (HAVOK), for example, can mimic the behavior of

dynamic systems with complex mathematical forms (Moulder et al., 2022); the fitlandr

method can describe the nonlinear dynamics of a system with vector fields and stability

landscapes (Cui et al., 2023); recurrence quantification analysis (RQA) and recurrence

networks can describe when and how a system revisits similar states (Hasselman & Bosman,

2020; Marwan et al., 2007; Zou et al., 2019). However, those methods do not provide a direct

interpretation of the effects among variables (i.e., whether a higher value in X can predict a

higher or lower value of Y), which is often of interest in psychological research. Some models

are closer to the traditional linear vector autoregression framework but add a few nonlinear

terms to it. For example, the moderated VAR (M-VAR) model (Adolf et al., 2017; Bringmann et

al., 2024) allows adding an external moderator that can influence the VAR parameters. Adding

more variables is challenging as the number of possible terms can increase exponentially as the

possible nonlinear forms and the possible variables involved expand. The sparse identification

of nonlinear dynamics (SINDy) algorithm, for example, applies a penalized regression for a

large amount of nonlinear dynamic forms and aims to recover the dynamic equations of a

system from time series (Brunton et al., 2016). However, this method has a high requirement

on the sampling frequency, length, and precision, thus also unsuitable for psychological ILD.

So, is it possible to develop a method that can estimate the coefficients of some nonlinear

terms in the multidimensional dynamic equations from empirical time series? What we are

looking for is a method with more balanced characteristics in interpretability, feasibility, and

ability to represent nonlinear dynamics than currently available methods. Therefore, in this
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article, we introduce a new technique, quadratic vector autoregressive (quadVAR,

accompanied by an R package of the same name) models, which provides a method for fitting

quadratic relationships among many variables in psychological ILD. Here, by quadratic we

mean a quadratic polynomial with the quadratic terms of a single variable (e.g., �1
2) as well as

all the possible second-order interaction terms (e.g., �1�2 ). We chose quadratic models that

are similar to Haslbeck, Borsboom, et al. (2021) and Bringmann et al. (2024) instead of more

flexible curves, such as the generalized additive model, GAM, and the kernel smoothing

method (Haslbeck et al., 2021; Wood, 2017), because the number of possible nonlinear terms is

already very large in the case of interactions of quadratic polynomials. Consider an assessment

of 10 items, the linear terms ( �1, �2, …, �10 ) and the quadratic terms ( �1
2, �1�2, �1�3, …,

�2
2, �2�3, …, �10

2 ) already have 65 degrees of freedom. Fitting this model for each outcome

variable would increase the total degrees of freedom to 650. Considering the amount of data

available in psychological studies, the possible terms in the model are already numerous.

Haslbeck, Bringmann, et al. (2021) only used time as the moderator, which reduces the number

of effects to be estimated and more degrees of freedom can be used to refine the shape of the

curves. For the same reason, we did not include higher-order terms and non-polynomial terms,

unlike Brunton et al. (2016). We will revisit the pros and cons of this choice in the discussion

section.

After choosing the general strategy of quadratic regression, two further issues remain to

be addressed. First, how can the structure of the whole model be constrained? For models with

interaction terms, it is desirable that the model structure has a hierarchy guided by the

marginality principle, which means corresponding linear terms (e.g., �1) enter the model before

interaction terms (e.g., �1�2, Hao & Zhang, 2017; Nelder, 1977). Otherwise, an arbitrary change

of the zero point of the scale can lead to a change in the number of terms in the resulting model,

thus influencing the estimation of model complexity in the penalized regression procedure.

For example, if we obtain a model where � = �1�2 , there is only one term chosen for the

predictor side, but if we arbitrarily choose another scale, �1
' = �1 + 10 , then we have, � =

(�1
' − 10)�2 = �1

' �2 − 10�2, where the term �2 appears again. As most of psychological scales

are interval scales, we do not have reason to believe one particular zero point is superior to

another. This makes it important to keep the aforementioned hierarchy in the regression

structure. In quadVAR, we deal with this issue by using the Regularization Algorithm under

Marginality Principle (RAMP, Hao et al., 2018) algorithm, which we will introduce later in

more detail.
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Second, even if a nonlinear model can be estimated, it can be difficult to interpret all the

coefficients and draw meaningful conclusions. The widely used network representation uses

the width of edges to represent the linear relationships among variables. If the relationship is

nonlinear, a large number of hyperedges (i.e., edges connecting three or more nodes) may be

needed to describe the full dynamics, which makes inference and visualization more

complicated (Bringmann et al., 2024; Haslbeck et al., 2021). To deal with this issue, we adapted

the proposal by Kroc and Olvera Astivia (2023) and propose using linearized networks for

interpretations.We will also introduce this method in more detail in later sections.

The remainder of this article is structured as follows. First, we introduce the quadVAR

method, which includes the RAMP algorithm for quadratic regressions and the local linearized

networks for interpretation. After that, we use simulated datasets and empirical datasets to

examine the performance of quadVAR. With simulated datasets, we examine the performance

based on information criterion, cross-validation, and inference based on the true model. With

the empirical datasets, we show how the method performs in real life. Finally, we discuss the

pros and cons of using nonlinear autoregressive models for psychological ILD and possible

future developments in nonlinear time series modeling.

The quadVARMethod

In this section, we introduce the quadVAR method, which includes an estimation part using

RAMP, and an interpretation part using local linearized networks. We will explain the

motivation, specification, and advantages of the two parts separately.

RAMP: Quadratic Regularized Regressionwith Hierarchical Structure

The core algorithm of model estimation in quadVAR is based on the RAMP algorithm, (Hao et

al., 2018). High dimensional regression with nonlinear terms is a complex statistical question

by itself (Hao & Zhang, 2017). Many statistical methods have been developed in the past

decade, mainly in the context of bioinformatics. Among those methods, RAMP is a recent one

that retains a hierarchical structure, and previous research has shown that it performs

similarly or better than other comparable models (e.g., hierNet, Bien et al., 2013, and iFOR, Hao

& Zhang, 2014) with high computational efficiency and an implementation in R (Hao et al.,

2018; Luo & Chen, 2021; C. Wang et al., 2021). We briefly introduce the algorithm as follows. A

linear vector autoregressive model with � variables can be formulated as

�� = � + ���−1 + ��, (1)

where �� is the �-dimensional vector representing the variables at time �, � is a vector of the

same length representing the constant term,� is a � × � coefficient matrix, and �� is a
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�-dimensional vector of error terms at time � . To simplify the notifications, we only consider

the regressive model for the �-th outcome variable. All the estimations are independent of each

other, so we can always first get the regression model for each variable as the outcome variable,

and then combine them together to constitute the full VARmodel.

��,� = �� + ����−1 + ��,�. (2)
The standard ordinary least square (OLS) estimation for this regression model with �

observations is then given by

��� , ��� = argmin
��,�� �=2

�

��,� − �� − ����−1
2

� . (3)

As shown above, there are � + 1 parameters to be estimated for a single outcome variable,

thus � � + 1 parameters for the whole VAR model, which is often a large number compared

to the number of observations. Therefore, to increase the parsimony of the model and prevent

overfitting, a shrinkage method, namely the least absolute shrinkage and selection operator

(LASSO) is often used (e.g., Epskamp & Fried, 2018; Haslbeck et al., 2021). This method has a

penalty term for the coefficients,

���, ��� = argmin��,��
�=2

�

��,� − � − ����−1
2

� + �� �� 1, (4)

which also does a variable selection, that the coefficients of unimportant terms will become

zero, making the model more parsimonious. If we add quadratic terms, the regressive model

becomes:

��,� = �� + �����−1,� + �����−1 ∘ ��−1 + ��,�, (5)

where we follow the notation by Hao et al. (2018) and define �� ∘ �� as all the pairwise

products of �� , namely ��,1��,1, ��,1��,2, …, ��,���,�
�
, which is a vector with � � + 1 /2

dimensions, and ��� is a � � + 1 /2 coefficient vector of all quadratic terms. Taken together,

there are � � + 1 + �2 � + 1 /2 coefficients to be estimated for the whole quadVAR model,

and the possible coefficients for quadratic terms are much more than the coefficients of the

main effects. If we use LASSO for all the linear and quadratic terms altogether, two issues will

arise. First, as the number of quadratic terms is much larger than the number of linear terms,

quadratic terms are more likely to be selected in the final model, which has a negative effect on

model parsimony because we would only want to add nonlinear terms and complicate the

model when the quadratic terms are necessary. Second, if we add quadratic terms without

corresponding linear effects, the structure of the model is subject to change with a simple

coding transformation, as themarginality principle we explained above.
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The RAMP algorithm solves those problems with special treatment for interaction terms

and hierarchical structure between the main effects and interactions. Specifically, the model is

built with a sequence of penalty parameters, in descending order (��,1 > ��,2 > … > ��,� ). In

each step �, all the main effects that have been involved in the interactions in step � − 1 will

not be panelized, and the other main effects that have not been involved in the interactions in

step � − 1, together with the permitted interactions based on the main effects that are already

in the equation in step � − 1, may enter the equation subject to the penalty parameter of the

current step. Written in statistical representation:

��,�� , ���,��, ���,��

= argmin��,�,���,�,���,�
�=2

�

��,� − �� − ���,���−1,� − �����,�−1� (���,�)��−1 ∘ ��−1
2

�

+ ��,� �����,�−1� ���,�
1

+ ���,�
1

,

where �����,�−1� (���,�) represents choosing permitted interaction terms from ���,� based on

���,�−1� , and �����,�−1� ���,� represents choosing other main effects from ���,� that did not

participate in���,�−1� .

With different ��,� values, a set of candidate models is generated for the � -th outcome

variable. All the models are then evaluated using extended Bayesian information criteria (EBIC;

Chen & Chen, 2008) to find the model that performs the best. EBIC is a variation of BIC with

the model searching space considered. The original BIC only considers the number of

parameters estimated in the penalty term. This is problematic when a large number of models

are estimated and compared because when more parameters are estimated, there are often a

large number of possible models, and it is likely that some of them by chance have a better fit.

By penalizing the model searching space, EBIC can better ensure the model parsimony and

have a better estimate of the model performance in new datasets. The EBIC metric has also

been used in many popular linear, binary, and mixed network estimation methods (Epskamp

et al., 2012; Epskamp & Fried, 2018; Haslbeck &Waldorp, 2020; van Borkulo et al., 2014).

Local Linearized Networks

After obtaining the estimation for the quadratic regression model, we still need to know what

inferences we can draw from the estimation result. Drawing inference from a nonlinear model

can be tricky because, as in analyzing interactions for ANOVA, the size of an effect may be

dependent on the value of another variable, or the variable itself. Here, we take the proposal by

Kroc and Olvera Astivia (2023) to use a linearization method. Technically, it takes the partial

(6)
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derivative of the regression as the size of an effect, which means that given all other variables

held constant, how much the expected change of the outcome variable is given one unit

increase of the input variable. All the pairwise effects can be visualized as a network, with the

weight of edges representing the effects, the same as linear longitudinal networks (Bringmann

et al., 2013). For linear VARmodels, the size of the effect is always the same, independent of the

variable values, and equal to the corresponding coefficient. In contrast, for quadVAR models,

the effects may change with the variable values, which means the variable values will change

the structure of the autoregressive networks. Examples will be given in subsequent sections.

Performance of quadVAR: A Simulated System

To give a general illustration and examine the performance of quadVAR, we first show its

performance based on a simulated system. We use a nonlinear, bistable emotional model

adapted from van de Leemput et al. (2014), which is an extension of the Lotka–Volterra

equation. The basic assumption of the model is that there are two positive emotions and two

negative emotions in an emotional system. The positive emotions strengthen each other,

weaken the negative emotions, and vice versa. Many previous studies have used this model to

illustrate nonlinear dynamics and bimodality in psychological ILD (e.g., Cui et al., 2023;

Haslbeck & Ryan, 2022). The original model is described continuously, yet in the current work,

we rewrite it as a discrete version because the quadVARmodel we introduce is a discrete model.

If we estimate a discrete model from a continuous system, the coefficients do not have a one-

on-one relationship, and it is difficult to obtain the true coefficients (Ryan &Hamaker, 2022).

The model we use is specified as follows:

�1,�+1 = 0.8 + 1.5�1,� − 0.1�1,�
2 + 0.02�1,��2,� − 0.1�1,��3,� − 0.1�1,��4,� + ε1,

�2,�+1 = 0.8 + 1.5�2,� − 0.1�2,�
2 + 0.02�1,��2,� − 0.1�2,��3,� − 0.1�2,��4,� + ε2,

�3,�+1 = 0.8 + 1.5�3,� − 0.1�3,�
2 + 0.02�3,��4,� − 0.1�1,��3,� − 0.1�2,��3,� + ε3,

�4,�+1 = 0.8 + 1.5�4,� − 0.1�4,�
2 + 0.02�3,��4,� − 0.1�1,��4,� − 0.1�2,��4,� + �4.

(7)

In this system, �1 and �2 represent two positive emotions, for example, cheerful and

content, and �3 and �4 represent two negative emotions, for example, sad and anxious (van de

Leemput et al., 2014) and �� (� = 1,2,3,4) are Gaussian noise with �� = 1 . We first show the

networks for the true model in Figure 1. Since the model is nonlinear, the network structure

differs per variable value. We can see that in the neutral situation (Figure 1a), the influence of

positive emotions on negative emotions is as strong as the effect of negative emotions on

positive emotions, which is expected because the model has a symmetric structure. Yet, when

the system is dominated by positive emotions (Figure 1b), the strength of the edges becomes
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asymmetric. The effect of positive emotions on negative emotions is not strong anymore, but

negative emotions have a stronger influence on positive emotions. The opposite pattern

appears when the system is dominated by negative emotions (Figure 1c).

Figure 1. Linearized networks for the true model for different system states: (a) neutral state,

which is the saddle point between two phases: �1 = �2 = �3 = �4 = 2.80 ; (b) positive state,

which is the local minimum of the phase dominated by positive affects, �1 = �2 = 4.89, �3 =

�4 = 1.36; (c) negative state, which is the local minimum of the phase dominated by negative

affects, �1 = �2 = 1.36, �3 = �4 = 4.89.

We then simulate the models for different lengths, namely 50, 100, 200, 500, and 1,000

timesteps, and estimate quadVAR models from the simulated datasets. Those data lengths

correspond to different scenarios in psychological ILD collection: collecting 50 data points is

an entry-level for ILD studies, and collecting 1,000 data points corresponds to the maximum

possibility in ILD collection in previous studies (e.g., Delignières et al., 2004; Kossakowski et al.,

2017). We first show an example for each simulation length and the networks estimated

thereafter are shown in Figure 2. From the simulation sample, we can observe that for 50 data

points, the bistability of the system is only vaguely observable, whereas for 200 or more data

points, the bistability of the system is clearer. Similarly, the estimated networks also become

close to the true networks for longer time series. During the simulation trials, we also found an

interesting phenomenon that is specific to nonlinear multistable systems, decreasing noise

does not always lead to better model estimates; on the contrary, it may make the system stay

longer in one phase and reduce information on alternative phases, therefore decreasing model

performance.We show an example of this finding in Appendix F1.
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Figure 2. Linearized networks for the simulation examples with different lengths. In each row,

the first plot shows the raw time series of �1, the second to the fourth plots show the linearized

networks estimated from simulation data for the neutral state (�1 = �2 = �3 = �4 = 2.80 ),

the positive state ( �1 = �2 = 4.89, �3 = �4 = 1.36 ), and the negative state ( �1 = �2 =

1.36, �3 = �4 = 4.89).
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We then run simulations for each length 1,000 times and evaluate the performance of the

quadVAR models in two parts. First, we compare the performance of quadVAR with the NULL

models (i.e., the intercept-only models that simply use the mean as the prediction), the AR

models, the unregularized VAR models, the regularized VAR models (with the ncvreg package

in R, Breheny & Huang, 2011), and the unregularized quadVAR models, based on the EBIC

metrics and cross-validation. To consider the scenario that the true system is linear, we also

simulate a linear system based on a regularized VAR estimation (coefficients reported in

Appendix F2) of the nonlinear model described above. This makes sure the linear model is

comparable with the nonlinear model. To evaluate the model performance in predicting

unseen new data points, we perform 10-fold block cross-validation based on the suggestions

by Bergmeir and Benítez (2012) and Bulteel et al. (2018) and take the mean squared error (MSE)

as the performance metric. Although theoretical work has shown that the performance

measures based on information criteria will be consistent with the measures based on cross-

validation asymptotically (Shao, 1997; M. Stone, 1977), for real-life situations with limited

observations, cross-validation may still give different results than information criteria. Most

previous studies only used the cross-validation method for evaluating model performances

(e.g., Bulteel et al., 2018; Dablander et al., 2020). In the current study, we use both to compare

their differences. Second, we calculate the correlation of the estimated nonlinear coefficients

from quadVAR and the true nonlinear coefficients, as well as several classification metrics,

including correlation, precision, recall, specificity, sensitivity, and accuracy (see Appendix F3

for the definition of those metrics; Mansueto et al., 2022). Compared with information criteria

and cross-validation, which focus more on the overall predictive power, the correlation of

coefficients and classification metrics focus more on statistical inferences of individual

relationships among variables. In addition, we also examine the classification metrics for the

key nonlinear effect described above, namely the effects of positive emotions on negative

emotions diminish when positive emotions are dominant (see Figure 1). Specifically, we define

a true positive when the effect of cheerful on sad in a positive state (�1 = �2 = 4.89, �3 =

�4 = 1.36 ) is higher than the neutral state ( �1 = �2 = �3 = �4 = 2.80 ), and is a false

negative otherwise. We also compare the same effect at the positive state ( �1 = �2 =

4.89, �3 = �4 = 1.36 ) and the positive-neutral state ( �1 = �2 = 4.89, �3 = �4 = 2.80 ),

which should be the same for the true system. Therefore, we define a true negative when the

effect of cheerful on sad at the positive state and the positive-neutral state is the same, and a

false positive otherwise.
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AssessingModel Performancewith EBIC and Cross-Validations

As the raw EBIC values are not comparable for different datasets, we report Δ EBIC values

instead, which are the raw EBIC values subtracted by the EBIC values of the quadVAR model.

The results for the original nonlinear system are shown in Figure 3a, and the results for the

comparable linear system are shown in Figure 3c. According to the guidance by Burnham et al.

(2002), an EBIC difference of 10 or larger is considered essential. We draw this criterion as a

red dashed line in Figure 3a and 4c. From the results, it is clear that quadVAR performs best for

the nonlinear simulation model when the input dataset contains 100 or more data points,

whereas the VAR model performs best when the actual system is linear. For short time series

with a length of 50, the VARmodel outperforms the quadVARmodel. This is in agreement with

the results by Bulteel et al. (2018) because more complex models need more data points to be

precisely estimated. If the available data points are not enough, the estimation results of the

model may be inaccurate, making the performance worse than a simpler, yet mis-specified

model. The AR model never performs well, which is different from previous studies (e.g.,

Bulteel et al., 2018; Dablander et al., 2020), and the unregularized full VAR model performs

almost as well as regularized VAR models. This may be because the simulation model we used

contains dense mutual influences among variables, and this is also the case for the comparable

linear system, which only contains one absent effect. We will revisit how realistic the

simulated systems are in later discussions. We show the MSE values from cross-validations

with datasets of different lengths in Figure 3b and 4d. In general, cross-validation MSE shows

a similar pattern as the information criteria (Figure 3a and 4c). One difference is that, when the

true system is nonlinear, the unregularized quadVAR model yields similar or even better

predictions than the regularized quadVAR model yields. This indicates that the regularization

procedure in quadVAR is more conservative and tends to produce models with higher

parsimony, but this does not necessarily lead to a better prediction performance. Overall, both

EBIC and cross-validation results indicate that, as the dataset is long enough, the model that is

closer to the true dynamics of the system tends to perform better, and the general performance

of quadVAR is satisfactory whenmodeling sufficient data from nonlinear systems.
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Figure 3. EBIC and cross-validation MSE comparison for repeated simulations. The first row is

the results from the original nonlinear system, and the second row is the results from the

comparable linear system. The suffix “_full” represents the unregularized models (i.e., none of

the parameters shrink to zero). The error bars represent standard deviation. Note that to

represent large ΔEBIC values, we used pseudo-logarithm scales for the y-axis, which means

the scale is logarithmic for large values but smoothly transforms to a linear scale around 0.

AssessingModel Performancewith ClassificationMetrics

The classification metrics for the coefficient estimations and the nonlinear effects are

summarized in Figure 4. We first look into Figure 4a, which is the classification metrics for

nonlinear parameters. In general, many indicators seem suboptimal for short time series,

especially the sensitivity. Because large effects are more important than small effects in real-

life scenarios, we also checked the sensitivity for coefficients with an absolute true value larger

than or the same as 0.10. As expected, the sensitivity for those coefficients is higher than that

for all coefficients, but still rather low for small sample sizes. Precision and specificity are

better for small sample sizes, yet the specificity declines as the sample size grows. The accuracy

and correlation also increase steadily as the sample size grows. Taking together, although the
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overall performance of the method increases as the sample size increases, it seems to be more

on the liberal side for larger sample sizes at the coefficient level.

Figure 4. Classificationmetrics for the models estimated from simulation data.

In contrast, the classification metrics for nonlinear effects (Figure 4a) show a different

pattern. The sensitivity is rather high for smaller sample sizes and slightly declines as the

sample size grows, yet the precision starts low and quickly grows as the sample size increases.

The reason for this difference could be that multiple coefficients can lead to similar nonlinear

effects. In the true system, all the variables have symmetric forms of dynamic functions. The

values of �1 and �2 are always similar, so as �3 and �4 . If in the coefficient estimation

misattributed an effect from �1 to �2, the nonlinear effect may still be correct. Therefore, as the

sample size grows, the estimation of the nonlinear effects also improves but leans toward the

conservative side.

Discussion for the Simulation Study

In this section, we tested quadVAR on a simulated nonlinear system. We found that, overall,

quadVAR has an adequate performance. For nonlinear systems, it performs better than linear

models both in EBIC and cross-validation when the sample size is not too small. For linear

systems, using quadVAR can result in lower EBIC than linear models, as expected, but the

cross-validation result is not much worse than the linear models, which indicates that the

higher flexibility of quadVAR did not lead to excessive overfitting. For statistical inferences, the

overall performance of quadVAR is not entirely satisfactory but is comparable to the individual

linear models reported in previous studies (Mansueto et al., 2023), which also indicates that

the overfitting issue of quadVAR is well controlled. Although some classification metrics are

not very high for usual sample sizes (especially sensitivity for coefficients and precision for

nonlinear effects), we would like to emphasize that, as far as we know, quadVAR is the only
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method to date that allows estimating nonlinear dynamics from individual ILD, which means

that if we also draw the classification metrics of other methods in Figure 4, they will all be a

straight line of zero because they will assume all nonlinear coefficients to be zero. In this sense,

we suggest that quadVAR is a suitable method to estimate nonlinear dynamics for exploration

purposes, yet the inferences should be drawnwith caution. We also note that all the results we

reported are only for one simulated system, which as we show later, is quite different from the

dynamic structure estimated from real-life data. We will revisit this issue after showing the

results from empirical data.

Performance of quadVAR: Empirical Datasets

In this section, we assess the performance of quadVAR using empirical datasets. As the true

system is unknown, we cannot use classification metrics to evaluate the model performance.

Therefore, we focus on cross-validation and EBIC results. Apart from the general performance

of the models, we also show several examples to draw nonlinear inferences from quadVAR

estimations. We note that the following results are mainly used for examining the method

instead of drawing empirical conclusions, and the analysis procedures were not preregistered.

We used two datasets from previous studies. The datasets were chosen with three criteria.

First, the datasets should contain enough data points for each individual, preferably around or

more than 200 data points. This is based on our simulation results, that the performance of

quadVAR is only adequate when the data length is around this amount. Second, the

assessment should be done on a visual analog scale (VAS) instead of a Likert scale, because we

consider a continuous scale is needed to adequately estimate nonlinear influences, yet a Likert

scale would be too discrete and restricted to allow nonlinear features to present. Third, the

datasets should be openly available (or easily available upon request) so that the results can be

easily reproduced.

We found two datasets that suffice for the above criteria. The first one is the dataset from

Rowland and Wenzel (2020). This dataset was especially interesting because that Haslbeck et

al. (2023) reported this dataset contains strong bimodality that cannot be recovered using the

VAR model. Therefore, by using this dataset, we can examine whether involving nonlinear

terms would help to describe datasets with nonlinear features. The dataset contains 125

participants, and each of them answered 8 questions about their current affective states1 6

times per day in a 0-100 VAS for 40 consecutive days. On average, the participants had 172.56

valid responses (ranging from 76 to 226, SD = 35.13). To avoid the influence of different time

1 Those affective states include happy, excited, relaxed, satisfied, angry, anxious, depressed, and sad.
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intervals, all the overnight lags and lags with missing data in between were removed before

the modeling procedure. The effective data length of the participants then had a mean of

114.06 (ranges from 30 to 180, SD = 36.83).

The second one is the dataset from Kuppens et al. (2010), requested from the EMOTE

database (Kalokerinos et al., in preparation) under request number 3UUCEGX6EU. In this

study, each participant answers 8 questions about their affective state and emotional

regulation strategies. On average, the participants had 173.6 valid responses (ranging from 46

to 211, SD = 26.54). As the two datasets showed similar patterns, we focus on the results from

the first dataset in the main text and report the results from the second dataset in Appendix F4.

For cross-validation, we winsorized the prediction within the possible range of answering

to account for the restriction of the scale range (e.g., if a model prediction is 150 but the

original data was collected using a scale from 0 to 100, we change the prediction to 100). All

other settings for the cross-validation are the same as in the simulation study reported in the

previous section.

General Model Performance by EBIC and Cross-Validation

The EBIC and cross-validation results for the dataset from Rowland and Wenzel (2020) are

summarized in Figure 5. For empirical data, the model selection results by EBIC and cross-

validation have very different patterns. For the dataset from Rowland and Wenzel (2020), if

we use EBIC for model selection, the quadVAR model is the best one for 69 out of 125

participants (55.20%), followed by the AR model (48 participants, 38.40%), the VAR model (5

participants, 4.00%), the NULL model (2 participants, 1.60%), and the unregularized quadVAR

model (1 participant, 0.80%)2. In general, the AR model and the quadVAR models perform the

best, and their relative model performances are related to the effective data length. The

correlation for the relative EBIC of the AR model is 0.19 (p = 0.03, 95% CI [0.02, 0.36]),

indicating that quadVAR performs better with longer datasets. However, if we use cross-

validation for model selection, the ARmodel is the best for 105 participants (84.00%), followed

by the unregularized VAR model (9 participants, 7.20%), the VAR model (5 participants,

4.00%), the NULL model (5 participants, 4.00%), and the quadVAR model (2 participants,

1.60%). This strong discrepancy between EBIC and cross-validation is not expected from either

the theory (Shao, 1997; M. Stone, 1977) or the simulation study we performed in the previous

section. The performance of the quadVAR model is well judged by EBIC, but not as much

judged by cross-validation. The performance of the AR model is much better with cross-

2 Those numbers do not sum up to 125 participants because for some participants multiple procedures had the same
model selected and they are tied for the best.
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validation than with EBIC. The NULLmodel also performs better in cross-validation than EBIC.

Interestingly, even the best-performing AR model is not much superior to the NULL model,

which indicates that time series modeling in general does not provide strong improvement

over using the mean for prediction. It is also worth noting that the quadVAR models do not

have more degrees of freedom compared to VAR models. The quadVAR models, on average,

have 10.07 degrees of freedom (SD = 8.40), and the VAR models have 11.78 degrees of freedom

(SD = 9.43) for the dataset from Rowland andWenzel (2020). To compare with, the AR models

have 8 degrees of freedom, and there are 576 candidate terms in total for quadVAR models to

select from. Therefore, using quadVAR models does not necessarily lead to an increase in the

complexity of the outcomemodel.

Figure 5. EBIC and cross-validation MSE for participants in Rowland and Wenzel (2020). Gray

lines represent individual participants. In Figure 5a, there are 4 participants for whom the

unregularized quadVAR models were overspecified. The EBIC values for the unregularized

quadVARmodels were thus negative infinity and not shown in the figure.

Examples of Nonlinear Features in Empirical Data

To illustrate the usage of quadVAR in discovering nonlinear relationships for idiographic data,

we show several examples from the two datasets. The examples are arbitrarily chosen from the

participants for whom the quadVAR model is the best model selected with EBIC and has at

least one nonzero nonlinear term estimated. The first one is from the 6th participant from

Rowland and Wenzel (2020). The nonzero parameters estimated using quadVAR for this

participant are shown in Appendix F5. Here, we focus on the nonlinear effect from excited:angry
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to angry. This indicates that different values of excited can result in different effects of angry on

itself for the next time point. This can be seenmore clearly from the linearized networks shown

in Figure 6, that with a higher level of excited, the self-reinforce effect of angry becomes

stronger. However, after a closer look at the data by plotting the residuals of angry controlled

on all other effects of angry at the previous time point, we found that this effect is likely driven

by several influential cases (Figure 7). There was once that the participant had an exceptionally

high level of angry. The level of excited is low at this point, but high at the previous time point.

This single time point contributed strongly to a significant estimate of the interactions

between excited and angry.

Figure 6. Linearized networks for the 6th participant in Rowland and Wenzel (2020) with

different levels of excited: (a)Mean – SD; (b)Mean; (c)Mean + SD. The following abbreviations

are used: "hpp" represents happy, "exc" represents excited, "rlx" represents relaxed, "sts"

represents satisfied, "ang" represents angry, "anx" represents anxious, "dpr" represents

depressed, "sad" represents sad.
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Figure 7. Partial plot of the residual of angry, controlled for all other variables excluding angry

at the previous time point, on angry at the previous time point. Different colors represent high

or low values of themoderator, excited, at the previous time point, divided by the median.

The second one is the 8th participant from Rowland and Wenzel (2020). The nonzero

parameters estimated from quadVAR are shown in Appendix F5. There is one nonlinear

parameter, namely satisfied2 to happy. This means that changing the value of satisfied can lead

to a change in the effect from satisfied to happy. We can see this in the networks shown in

Figure 8, that with a higher level of satisfied, the influence of satisfied to happy becomes more

positive. We also checked the results with a partial plot (Figure 9). This time, in contrast to the

previous example for the 6th participant, the nonlinearity of the result seems more robust.

When the level of satisfied is low, it does not have a strong influence on the level of happy at the

next time point, but when the level of satisfied is higher, its influence on happy becomes more

evident.
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Figure 8. Linearized networks for the 8th participant in Rowland and Wenzel (2020) with

different levels of satisfied: (a)Mean – SD; (b)Mean; (c)Mean + SD. The following abbreviations

are used: "hpp" represents happy, "exc" represents excited, "rlx" represents relaxed, "sts"

represents satisfied, "ang" represents angry, "anx" represents anxious, "dpr" represents

depressed, "sad" represents sad.

Figure 9. Partial plot of the residual of happy, controlled for all other variables excluding

satisfied at the previous time point, on satisfied at the previous time point. Different colors

represent high or low values of the moderator, satisfied, at the previous time point, divided by

the median.
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Discussion for the Results from Empirical Datasets

Unlike the simulation datasets, for empirical datasets, the model performance was judged by

information criteria (EBIC in our study) and the cross-validation results showed strong

discrepancies. If we look at the results from cross-validation, wewill reach a similar conclusion

as Bulteel et al. (2018), that the AR model performs the best in predicting unseen data.

However, if we look at EBIC, which is also intended to be an estimate of the predictive power

for unseen data (Burnham et al., 2002; Chen & Chen, 2008; Wagenmakers & Farrell, 2004),

quadVAR performs better for more than half of the participants. The most likely explanation

for the better performance of the AR model compared to the simulation data is the differences

in the data generation process. Compared to the networks for simulation data (Figure 1), the

networks estimated with quadVAR from empirical data contain more self-reinforced loops and

much fewer edges, which indicates that the empirical data generation process is intrinsically

more similar to an AR process than the simulated system. However, this does not explain the

difference between EBIC results and cross-validation results. To our knowledge, the studies

regarding the difference between the two performance indicators are sparse, especially in the

context of psychology. We suspect that the influential cases and multistability in the datasets

may contribute to this, as some cross-validation folds may not include those influential cases,

thus having very different parameter estimates than using the whole dataset. Future studies

are still needed to fully resolve this issue. At the same time, we would not suggest removing

those influential data points before analysis, as those observations are from the same

individual, and the influential data points may represent rare yet important state of the system.

Therefore, we recommend always checking the influential cases before drawing conclusions

and treating themwith caution.

The example we presented showed nonlinear patterns that are theoretically interesting.

From the 8th participant from Rowland andWenzel (2020), for example, we found a nonlinear

relationship between satisfied and happy (Figure 9), and the relationship seems explainable

because when the level of satisfaction is low, it may not be significant enough to influence the

feeling of happiness, but when the level of satisfaction is high, it should be able to contribute to

happiness notably. However, we also saw a few overlaps of nonlinear effects between the two

participants shown here. As the quadVAR model is currently an idiographic model, it does not

consider any possible between-person similarities. Therefore, whether the nonlinear

relationships we found are only applicable to a single participant, or can be generalized to the

group level, is still a question to be investigated.
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General Discussion

In this article, we introduced the quadVAR method and the accompanying R package, that

enables testing non-linear effects in vector autoregressive models for psychological ILD. Our

method implements a state-of-the-art quadratic regression algorithm, RAMP (Hao et al., 2018),

that takes the hierarchy of regression structure and a large amount of possible nonlinear terms

into account. The linearization method was used to facilitate the interpretation of the

nonlinear regression output (Kroc & Olvera Astivia, 2023). The performance of the method

with both simulated and empirical datasets was examined. In simulation datasets, we found

that quadVAR outperforms linear methods for a nonlinear system, as long as the sample size is

large enough. When we look at the performance for individual parameters and nonlinear

effects, quadVAR has a similar problem as linear models in that the general accuracy is not very

high and requires a large sample size to reach satisfactory performance. This indicates that

quadVAR is more suitable for exploratory purposes and requires cautious interpretation and

confirmatory repetitions before reaching a solid conclusion regarding specific nonlinear

characteristics of a process. With empirical datasets, we found that quadVAR performs the best

for more than half of the participants judged by EBIC, yet cross-validation results favor the

simpler AR model. Further detailed investigations into individual participants showed that,

although sometimes the nonlinear effects were driven by several influential data points, there

were cases where a robust nonlinear relationship between psychological variables seemed to

exist, which evidences the usefulness of investigating nonlinear relationships for psychological

ILD but requires future investigations.

To our knowledge, the current work is the first in the field to explicitly model continuous,

intrinsic, nonlinear dynamics from psychological ILD. Including nonlinear terms in

autoregression models clearly induced more challenges. For the method development part, we

need special treatments for both the estimation and interpretation of the results. A challenge

in the simulation part is that nonlinear systems can easily become unstable (i.e., grow into

infinity), which makes it difficult to systematically vary the parameters to test their influences

on model performance. It also prohibits us from using a more realistic simulation example

using parameters estimated with empirical datasets. The noise level is another challenge

because it does not have a monotonic relationship with the model’s performance due to the

double role noise plays. On the one hand, stronger noise decreases the signal-to-noise ratio,

making it more difficult to retrieve dynamic information. On the other hand, driven by noise

the system travels through the state space more easily, adding more information to the data.

Therefore, it is difficult to systematically evaluate the influence of noise on the model’s
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performance. Challenges also arise for the performance benchmarks. In nonlinear models, the

linear coefficients are not independent of nonlinear coefficients, making it difficult to tell how

well the linear part is estimated within the nonlinear framework. We also saw the EBIC and

the cross-validation results favor different models, making it more difficult for model selection,

and this may also be related to the nonlinearity of the quadVARmethod.

Nevertheless, we also see promising signs of introducing such a nonlinear method into

the world of idiographic dynamic analysis and network modeling. First, counterintuitively, we

found that introducing nonlinear terms does not necessarily lead to a stronger overfitting issue.

The degree of freedom of the quadVAR models is even slightly lower than the VAR models for

the empirical datasets we used. This indicates that the nonlinear estimation algorithm we

implemented performed well in constraining the overall model complexity and choosing a

small number of nonlinear terms from a large reservoir. Theoretically, if some dynamic

characteristics of a system can be modeled with one nonlinear term, forcing the system to be

linear only makes it necessary to have more terms, which actually increases model complexity.

Therefore, using nonlinear terms does not necessarily lead to more severe overfitting problems.

We also see from the partial plots that quadVAR has the potential to discover nonlinear

dynamical relationships from multidimensional time series. Taking all the evidence together,

we suggest that exploring nonlinear dynamical relationships for psychological ILD is a

promising direction, and when a linear method is used, the existence of nonlinearity and

outliers in the datasets should be checked.

Several directions of development are worth future consideration. First, the order of the

quadratic terms may be extended further. As shown by Kroc and Olvera Astivia (2023),

including cubic terms is beneficial to model many nonlinear relationships in psychology,

including the ceiling and flooring effects. Using higher-order terms inevitably makes themodel

selection process more difficult. Although it may not be feasible to estimate all possible cubic

and even higher-order interaction terms for psychological ILD, adding cubic terms for single

variables may be possible. Future studies may also consider using robust estimations in

quadVAR and idiographic modeling in general, as we saw influential data points may be

present in individual ILD that may change the parameter estimations significantly. Yet no

matter such robust method can be developed or not, we would emphasize again the

importance of checking influential cases in dynamic modeling studies in general, which is

hardly done in current empirical studies, as most of the shrinkage methods and multilevel

methods based on least squares estimates are actually sensitive to outliers (Dedrick et al., 2009;

H.Wang et al., 2007).
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Second, it may be possible to develop a multilevel extension for the quadVAR method.

Previous research has shown that multilevel models perform better in cross-validation because

they can also use information from other participants for estimation, therefore partly

overcoming the constraints of limited data points per participant (Bulteel et al., 2018).

However, multilevel models assume the coefficients of each participant vary around the group

mean, which means that the within-person dynamics should be similar enough across people.

This may not hold, as we see great variability in network structures among individuals.

Alternatively, more idiographic frameworks, like the group iterative multiple model estimation

(GIMME, Lane & Gates, 2017; Wright et al., 2019) may also be considered to estimate the

generalizability of the relationship at the group level. A major difficulty in developing such

group-level methods is that the RAMP algorithm and some alternative quadratic regression

algorithms (e.g., hierNet, Bien et al., 2013) are all based on the LASSO penalized regression

framework, which shrinks the parameter estimates to zero instead of the group mean. Recent

developments have shown the possibility of combining multilevel modeling and LASSO in a

single estimation procedure (e.g., glmmLasso, Schelldorfer et al., 2014). Combining this idea

with the quadVARmethodmay be a productive approach.

Third, data collection and study design may also be improved to provide datasets that are

more suitable for discovering nonlinear dynamics. In the empirical examples, we found the

estimated networks are rather sparse, with very few connections across variables. This may

partly be because the variables assessed were aimed at providing a general description of the

affective state of participants, instead of examining a specific relationship between some

important variables. With the nonlinear estimation available, future research may be

specifically designed to recover nonlinear dynamics that are theoretically predicted. A well-

designed algorithmmay help to discover potential effects and examine certain hypotheses, but

it can never do the conceptual job for researchers. As written by Burnham et al. (2002, p.147),

“ ‘Let the computer find out’ is a poor strategy for researchers who do not bother to think

clearly about the problem of interest and its scientific setting.” Therefore, what should be fed

into themethod should always be carefully considered.
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Abstract

Formal theories translate verbal theories into a mathematical representation, such as a

coupled differential equation or other dynamical systems, intending to strengthen the

deductive power of (clinical) theories and to formulate testable and novel hypotheses. Work in

clinical formal theories mainly relies on simulations, which is an intuitive method to evaluate

overall model performance but may fall short in establishing a precise link between the

mathematical properties of the model and the dynamic property of the model outcome.

Moreover, when the model outcome contradicts clinical observations, it is unclear where the

discrepancy comes from, and how to improve the model. In this current article, we introduce

formal mathematical techniques for graphical model analysis, including phase plane analysis,

which allows identifying a system’s stable and unstable equilibria, and bifurcation analysis, a

framework to delineate parameter regimes corresponding to qualitatively different dynamical

outcomes for a model. Using two formal dynamic models in psychology (one for panic disorder

and one for suicidal ideation), we illustrate those methods through an easy-to-use R package,

deBif, with a graphical user interface. With these examples, we show the importance of using

graphical tools to investigate the hypothesized mechanisms of psychological systems.
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Introduction

Psychology has a long history of theory development, yet the progress of integrating and

examining theories still faces strong obstacles (cf. Meehl, 1990a, 1990b). Many researchers

have used the term “theory crisis” to describe the fact that many theories appear to coexist in

many fields of psychology even though they often seek to explain the same empirical

phenomena. They almost all lack the ability to generate predictions that would allow

experimentalists to distinguish between the veracity of competing theories (i.e. by comparing

their empirical accuracy), and they lack the required level of formal description that would

allow theorists to determine whether they should be amended, integrated with competing

theories, or have to be abandoned entirely (Eronen & Bringmann, 2021; Fried, 2020; Oberauer

& Lewandowsky, 2019). One possible avenue to advance theory construction that has been

proposed by many researchers is the use of formal dynamic models as a way to clarify

psychological theories which should allow for the deduction of more precise testable

predictions (Borgstede & Eggert, 2023; Borsboom et al., 2021; Haslbeck et al., 2022; Robinaugh

et al., 2021, 2024, but also see Eronen & Bringmann, 2021; Oude Maatman, 2021, for opposite

opinions). By using formal models, researchers can translate verbal theories about

psychological phenomena into mathematical representations of how psychological processes

in an individual system interact and evolve. Some early formal models in psychology include

the classical conditioningmodel by Rescorla andWagner (1972), the handmovement model by

Haken et al. (1985), and the cognitive development model by van Geert (1991).

One type of formal model that was recently proposed is the formal dynamic model

defined using ordinary differential equations (ODEs) or stochastic differential equations

(SDEs). A distinct feature of these models is their ability to be simulated, allowing researchers

to explore the dynamic characteristics of the system in different contexts and compare it to the

real-life psychological phenomena that inspired the theory (Borsboom et al., 2021; Robinaugh

et al., 2021). Many formal dynamic models have been proposed in the past years (Burger et al.,

2020; Schöller et al., 2018; van Dongen et al., 2025; Wang et al., 2023), and some researchers

have also advocated using formal dynamicmodels to integrate interpersonal and intrapersonal

theories (Borsboom & Haslbeck, 2024) and test the effectiveness of psychotherapies in silico

(Ryan et al., 2025).

Most of the available studies on formal dynamic models solely rely on simulations for

generating predictions and model evaluations. Usually, simulation results are used to either

qualitatively compare it to the phenomena observed in real life (Burger et al., 2020; Robinaugh

et al., 2024; Schöller et al., 2018) or make comparisons between some statistical indicators of
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the simulated data and real-life data (Haslbeck et al., 2022). An ultimate validation of the

formal model would be the case in which an as-yet-unknown phenomenon is predicted, which

is subsequently corroborated to exist in an empirical study (e.g., Simmering et al., 2008;

Spencer et al., 2001). Simulation-based approaches are intuitive and easily built on the existing

toolkits of psychologists, yet they also have considerable shortcomings. One problem is that

simulations do not provide direct insight into what the critical components and interactions

are that give rise to a certain phenomenon (Cui et al., 2023). When the simulation output is in

accordance with real-life observations, we do not know whether this only holds for a very

specific set of function forms and parameter values, or whether it also generalizes to a wider

range of (similar) conditions. When the simulation output is not in line with the real-life

phenomena, we do not know what the problem might be, nor do we know what we can do to

solve it. Those shortcomings may limit progress in studying the potential of formal dynamic

models in advancing psychological theories.

Several other fields of science, such as biology and physics, have a much longer history of

applying dynamic models for advancing theories, and they have developed concrete

mathematical methods for analyzing dynamic models that we can also apply in psychology.

One helpful technique, for example, is the phase plane analysis (Kuznetsov, 2023). This

technique uses both mathematical calculations and graphical representations to find out the

equilibria of the system and studies the evolution of a system from a given starting place.

Another technique is the bifurcation analysis (Kuznetsov, 2023), which focuses on the

parameter space instead of the variable space. By using this technique, we can systematically

investigate how the parameter setting changes the stability features of the system and explore

the qualitatively different patterns of the system. To our knowledge, only a few psychological

studies in formal dynamic models have applied a simple version of phase plane analysis (Cui et

al., 2023; Cui, Olthof, et al., 2025; Dablander et al., 2023; Robinaugh et al., 2024), whereas

bifurcation analysis has not been used in the field of psychology so far.

Therefore, in this tutorial, we aim to provide a comprehensive introduction to both

techniques and illustrate their usage with concrete examples. The graphical tools that we

introduce here, should not be seen as replacements for the current simulation-based approach.

Rather, we see those different approaches as complementary, the graphical tools are important

for understanding the role of elements and interactions in a deterministic setting, whereas a

simulation-based approach can better accompany situations with noise and when there is a

rather large number of interacting elements involved. To improve the readability of the

manuscript, we limit the amount of mathematical derivations and provide graphical tools to
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reduce potential barriers to applying them to psychological systems. The tutorial is structured

as follows. First, we introduce the basic ideas of formal dynamic models in psychology and

outline two example models. Second, we explain the two techniques, namely the phase plane

analysis and the bifurcation analysis by analyzing these two models. Third, we illustrate the

usage of those two techniques by applying them to the two example systems. Finally, we

discuss the role of the analyses in modeling and reflect on the purpose of modeling and the

limitations of such approaches.

Introduction of Formal DynamicModels in Psychology

A formal dynamic model describes how the state of a system evolves over time, using formal,

mathematical language. The most common form of a formal model in psychology is based on

the stochastic differential equation (SDE), which takes the general form of d�/d� = � � d� +

� � d� , where � represents all relevant variables, �(�) represents the deterministic part of

the changing rate of the system, and �(�) represents the stochastic part of the system.

Analyzing SDEs is relatively difficult but analyzing the deterministic part of them d� = � � d�,

called ordinary differential equation (ODE), is often much easier. Therefore, we first focus on

the ODE skeletons of the models.

In the psychological context, variables may be emotions, perceptions, physiological states,

or any other quantities that are deemed important for a certain research question (but also see

discussions by Kalis & Borsboom, 2020; OudeMaatman, 2020). In the panic disorder model by

Robinaugh et al. (2024), for example, the core variables in the model are perceived threat (PT)

and physical arousal (A). According to previous theories by Clark (1986), the two variables can

strengthen each other, perceived threat increases when physical arousal is higher, and vice

versa, which forms a vicious circle, potentially leading to panic attacks. The theory does not

specify the exact form of the function. Therefore, various types of functionsmay apply. Here we

first show the function form by Robinaugh et al. (2024),

d�
�� = �� ���,��� − � − � , (1)

d��
d� = ���

1

1 + exp − ��� � − ℎ�,��
− �� , (2)

d�
d�

= ��
1

1 + exp − �� � − ℎ�,�
− 0.5� . (3)
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The functions between the two variables have different forms, one is a straight line, and

the other is an S-shaped curve. In later work by the same authors (Robinaugh et al., 2021),

various function forms were tried, and they found that the combination shown in Equations 1-

3 was the only one that produced the expected panic attacks. We will perform a detailed

analysis of this conclusion in subsequent sections. The original model by Robinaugh et al.

(2024) also involved many other variables. We will introduce some of them sequentially in

later sections, along with our analysis, to emphasize their specific roles in the model

performance. For now, we focus on these three variables. A simulation example using default

parameters (Table 1) is shown in Figure 1a. The spikes shown in this figure represent panic

attacks, characterized by short periods of high physical arousal (A) and perceived threat (T).

Table 1. The default parameter values for the panic disorder model.

Parameter Value

�� 0.5

���,� 1

��� 1

� 1

��� 20 − 10 ∗ 0.1�

ℎ�,�� 0.25�

�� 0.05

�� 20

ℎ�,� 0.4

Note. All model parameters are taken from the PanicModel package associated with Robinaugh

et al. (2024). The package can be accessed from https://github.com/jmbh/PanicModel/.

The panic disorder model has been used for illustration in many previous articles (e.g.,

Cui et al., 2023; Haslbeck et al., 2022; Robinaugh et al., 2021). To show the broad applicability

of the tools introduced here, we will also analyze another recently published formal model,

namely the model of suicidal ideation by Wang et al. (2023). In this model, the authors aim to

explain the observation that suicidal thoughts often have rapid onsets, short durations, and
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are close to zero most of the time, although the level of external stressors and aversive internal

states may fluctuate a lot. The core variables in the model are aversive internal states (A), urge

to escape (U), and suicidal thoughts (T). Their relationships are mathematically expressed as

follows:

d�
d�

= �2� � − � + �2� − �2�, (4)

d�
d�

= −�3� + �3�,
(5)

d�
d�

=− �4� +
1

1 + exp − �41 � − �42
,

(6)

Where S represents stressors, and other letters represent model parameters. The default

parameter values of this model are summarized in Table 2, and a simulation example of the

variables using the default parameters is shown in Figure 1b.

Table 2. The default parameter values for the suicidal ideationmodel.

Parameter Value

�2 1.5

�2 1.5

�2 0.1

� 0.1

�3 2.5

�3 3

�4 1.5

�41 90

�42 0.5

Note. All model parameters are taken from the code associated with Wang et al. (2023). The

code can be accessed from https://github.com/ShirleyBWang/math_model_suicide.
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Figure 1. Simulation examples for (a) the panic disorder model and (b) the suicidal ideation

model. We used the default parameter values shown in Table 1 and Table 2 for the simulations.

Random noise was added to specific variables according to the original specifications. For the

panic disorder model, Gaussian noise with sd = 0.01 was added to A. This is a simpler form of

noise than the one used by Robinaugh et al. (2024) as the form of noise is not the central topic

of investigation of the current work, and we found using this simpler form of noise in this

model to produce similar outputs. In addition, we removed the range restriction in the original

model to avoid artificial influence on the mathematical property of the dynamic system. For

the suicidal ideation model, we used the same form of geometric Brownian noise as used by

Wang et al. (2023).

Now we will move to the next section, in which we introduce the basic concepts of the

two graphical tools.

TwoGraphical Tools

In this section, we introduce important concepts used in two graphical tools for the analysis of

the dynamics of formal models. We introduce an easy-to-use R package with a graphical

interface, which makes it possible to analyze more complex systems automatically through

software. A brief illustration of the tools is shown in Figure 2. As we can already see there, the

graphical tools are shown in 2D spaces, which means that we can only analyze two variables or

parameters at the same time. This does not mean that those methods can only be applied to

dynamic systems with very few elements. As we will show later in concrete examples, we can

use those graphical tools to analyze various parts of the system step-by-step and eventually

reach amore comprehensive understanding of the dynamic features of the system as a whole.
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Figure 2. Illustration of several steps of the phase plane analysis and the bifurcation analysis.

Column A: simulated time series of variables x and y. Column B: various trajectories on the

phase plane of variables x and y. Column C: phase plane analysis with nullclines and

equilibrium points. Analysis results with various parameter values of a are shown. Column D:

one-parameter bifurcation analysis of the parameter a. Only the values of variable y are shown

for simplicity, while in actual analysis the values of multiple variables can be shown together.

Analysis results with various parameter values of b are shown. Column E: two-parameter

bifurcation analysis of both parameters a and b.

The first graphical method is phase plane analysis. Here the term phase plane can be

understood as a two-dimensional plot1, in which each axis represents the value of a variable.

Each point on the plot reflects a specific state of the system, characterized by the combined

values of two variables, and a trajectory of the system can be shown as a line on the phase

space (Figure 2, Column B). Compared to the time series plots (Column A), the phase plane

plots represent information about variables while omitting time. Phase plane analysis aims to

understand the direction of change, or how the state of the system evolves over time. For

example, we can investigate in which range the variable of a system will increase, and when it

will decrease (Column C). This is important for many psychological questions. If we know how

to increase a person’s positive emotion, we can understand how to help the person escape the

depressed state; if we know how to make the perceived threat decrease, we can understand

when a person having a panic attack can gradually recover to the normal state. In order to

1 Strictly speaking, this is the definition of 2D phase space, which is rather easy to interpret and informative. Therefore, in
the remaining part of this article, we use the term phase space to represent 2D phase space by default.
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know when a variable increases or decreases, we first need to find out the nullcline, the line on

which the variable keeps the same value. The nullclines also set the boundaries of the increase

and decrease region. For example, in Column C, the blue and the green curves are nullclines for

the two variables, x and y, respectively. For the region above the blue curve, x increases, and for

the region below the blue curve, x decreases. Similarly, for the region above the green curve, y

decreases, and for the region below the green curve, y increases. At the intersection points,

both variables are kept constant. Hence, those points are the equilibrium points of the system

(Column C). An equilibrium point can be stable or unstable. For a stable equilibrium point, the

system can return to it after a small perturbation, but for an unstable equilibrium point, the

system will go away from it after a small perturbation. Those two situations are often

illustrated with the ball-and-landscape metaphor, in which a stable equilibrium is like a ball in

the lowest position of a valley, and an unstable equilibrium is like a ball at the highest position

of a hill. Therefore, in the presence of noise, the system is more likely to remain close to stable

equilibria and stay away from unstable equilibria.

The equilibria of a dynamic system can be altered by changing the parameters. Those

parameters often define the strength of influence from one variable to another, or some

intrinsic features of some variables’ dynamics. In principle, if we want to investigate the

influence of parameters on the system’s dynamics, we can perform a series of phase space

analyses for various parameter values (Figure 2, Column C). However, this approach would be

quite cumbersome in practice. A more concise method for summarizing how parameters

influence the system's dynamics would be useful. Looking at Column C, we can find that a

minor change in the parameters only affects the position of equilibria, which is depictive in

most cases. Only in some special cases, a change in the parameters can lead to changes in the

stability of equilibria, the appearance of a new equilibrium point, or the disappearance of an

existing equilibrium point. Those situations, where a small change in the parameters leads to a

qualitative change in equilibrium points, are called bifurcations, and the method to evaluate

whether a bifurcation is happening is called bifurcation analysis.

In a one-parameter bifurcation analysis, a plot is drawn to show the system’s position of

the equilibrium points as a function of the parameter value (Figure 2, Column D). The

procedure of drawing such a plot consists of performing the phase plane analysis (Column C)

many times, each time with a specific parameter value, and then putting the variable values of

the corresponding equilibria states as dots in the one-parameter bifurcation plot on the

corresponding parameter value (marked as red dotted lines on the first subplot of Column D).

In the opposite direction, we can also infer the position of the equilibrium points in the phase
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plane analysis (Column C) as slices from the one-parameter bifurcation analysis (the first

subplot Column D). In the first two subplots of Column D, we see two bifurcation points, at

which a stable equilibrium and an unstable equilibrium point merged and disappeared. The

behavior of the system changes qualitatively when the parameter a crosses those two points.

In the range between the two parameter points, the system has two stable equilibria, but out of

this range, the system only has one equilibrium point. The bifurcation points may take

different forms than the one shown in our example. Much mathematical work has been done

in the 20th century to classify the types of bifurcation points. A more comprehensive overview

of the types of bifurcation points is available in Thom (1975) or Abraham and Shaw (1992).

A dynamic model often contains multiple parameters. If we want to investigate how two

parameters jointly influence the dynamics of the system, we can perform multiple one-

parameter bifurcation analyses with various values of the second parameter, as in Column D of

Figure 2. However, most of the bifurcation analyses will only have small, quantitative

differences, as is the case for the phase plane analyses. To oversee how two parameters

influence the behavior of the system, we can perform a two-parameter bifurcation analysis

instead. One-parameter bifurcation analysis can then be seen as taking slices of the two-

parameter bifurcation, depicting the bifurcation points (compare Column D and Column E

along the red dotted lines). The curve in a two-variable bifurcation analysis divides the

parameter space into two regions. Each region has different numbers or types of equilibrium

points. In the example of Column E, the region above the curve has two stable equilibria,

whereas the region below the curve has only one stable equilibrium.

Conducting phase-plane analysis for more variables or bifurcation analysis for more

parameters together is theoretically possible, but would require drawing plots in higher

dimensions, which are difficult to comprehend (but see de Boer, 2024, for an application for 3D

phase plane analysis). We therefore focus on the cases up to two dimensions in this article. To

make the analysis readily available for psychologists we introduce the R package deBif,

developed by de Roos (2025). The deBif package provides an easy-to-use graphical interface

that can be used to perform phase plane analysis and bifurcation analysis implemented by the

functions phaseplane() and bifurcation(), respectively. The phaseplane() function can produce

results like Columns A and B in Figure 2, and the bifurcation() function can produce results like

Columns C and D. Users can run those functions to evoke corresponding Shiny apps (Chang et

al., 2024), and from there, perform various analyses interactively. The functions of the package,

important parameters, and tabs are summarized in Table 3 and Table 4. We will illustrate the
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usage of the functions, the graphical interface, and specific analysis steps together with

examples.

Table 3. Key functions of the deBif package, the tabs of the corresponding Shiny apps, and

explanations.

Function Tab Explanation

phaseplane() Time plot Show the simulated time series from the

given starting point.

Nullclines Show the nullclines.

Steady states Show the steady states, and their stability,

together with the nullclines.

Vector field Show the nullclines, steady states, and the

vector field (representing the direction of

change) of different regions.

Trajectories Show the simulation trajectory (in Time plot)

on the phase plane, together with the

nullclines and the steady states.

Portrait Showmultiple trajectories starting from

different states, together with the nullclines

and the steady states.

bifurcation() Time series Show the simulated time series from the

given starting point.

1 parameter

bifurcation

Perform one-parameter bifurcation analysis

(starting point required)1.

2 parameter

bifurcation

Perform two-parameter bifurcation analysis

(starting point required).

Note. 1 Researchers often need to supply a new starting point for those calculations, preferably

from a steady state.

Many formal models contain more than two variables andmore than two parameters. For

those models, we still recommend that researchers focus on at most two variables and two

parameters at the same time to enhance the interpretability of the model results. The

treatment of other variables depends on the relative time scale of the system (Cui, Hasselman,
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et al., 2025; Hasselman, 2023). Variables evolving on faster timescales than the focus variables

will reach their steady state quickly, so we can assume that their time derivative is zero, and

therefore solve the fast variables as a function of slower variables to reduce the number of

variables in the analysis (Bertram & Rubin, 2017; Okino & Mavrovouniotis, 1998). Variables

that evolve much slower than the focus variables can be put as parameters in the model

instead of variables, to investigate how changing the values of these slow variables affects the

dynamics of the focus variables. We will show further illustrations with concrete examples in

subsequent sections.

Table 4. Key parameters for the functions in the deBif package.

Parameter Instruction

model An R function that describes the dynamic system. The function should take three

parameters, t, state, and parms, where t represents time, state is a named vector

of all the variables, and parms is a named vector of all the parameters. The output

of the function should be a vector of all the derivatives, in the order of the input

variables. This model parameter is rather abstract. Readers may use the codewe

share as the starting point andmodify it from there.

parms A named vector of all parameters. This parameter can be overwritten during the

execution of the Shiny app.

state A named vector of the initial values of all the variables. This parameter can be

overwritten during the execution of the Shiny app.

… There are other parameters to modify the graphic output in the Shiny app. See

the help document of the functions for details.

In what follows, we analyze the two systems introduced earlier. To prioritize clarity and

brevity, we focus on interpreting the analysis results in the main text and leave detailed

commands and procedures to produce the results in Online Supplementary Materials

(available at https://osf.io/ym9vt/).

Example 1: Analysis of the Panic DisorderModel

The panic disorder model is specified by Equations (1-3), with the default parameters in Table 1.

There are three core variables in the system: physical arousal (A), perceived threat (T), and

homeostatic feedback (H).
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Analysis withH as a Parameter

From both the default parameter values (Table 1) and the simulations (Figure 1a), we can see

that H changes at a much lower rate than the other two variables A and T. Hence, we first look

at the faster time scale constituted by A and T and treatH as a parameter.

We first investigate the results with the default parameter setting (Figure 3a). The two

nullclines represent the states where A and PT remain unchanged. The red line is the nullcline

for A. For all the states to the lower right direction of this line, A decreases, and vice versa. The

blue line represents the nullcline for PT. For all states to the upper left direction of this line, PT

decreases. The two nullclines cross at three points, of which the first and the third one are

stable equilibria, and the middle one is an unstable equilibrium point. The two stable steady

states represent the healthy and panic states of the system, respectively. From this analysis, it

seems that the system can reside in either state, yet from the simulations (Figure 1), we see that

the system can only move to the panic state for a short time, and after that, quickly falls back to

the healthy state. This needs to be explained by changing the value of H. After increasing H

from 0 to 0.5 (and enlarging the display range of the variables accordingly, Figure 3b), the

dynamic features of A and PT change. From Figure 3b, we can see that the nullcline of A (the

red line) moves to the upper left direction. Now the two nullclines only intersect at one point,

which is a healthy state as both A and PT have a rather low value at this point. Therefore, the

system can only gravitate towards a healthy state whenH is high enough.

Figure 3. Phase plane analyses results of the panic disorder model, withH as a parameter. (a) H

= 0; (b) H = 0.5. The plot shows the nullclines (the blue and the red lines), the steady states,

their stability (solid points for stable steady states and hollow points for unstable steady

states), and some trajectories.
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The one-parameter bifurcation analysis results are shown in Figure 4a. In this analysis,

we can see that both variables A and PT have two stable states between two bifurcation points,

where −0.28 < � < 0.28 (the specific coordinate values can be extracted from the Shiny

application). If � <− 0.28 , the system only has the panic stable state, and if � > 0.28 , the

system only has the healthy stable state. As H increases, the value of A for the stable states

decreases both for the panic state and the healthy state, whereas the value of PT does not

change much. Therefore, the bistability of the system only appears when homeostatic feedback

is in a certain range, and the strength of homeostatic feedback also influences the level of

physical arousal at the equilibrium states.

Figure 4. Bifurcation analyses results of the panic disorder model. (a) The one-parameter

bifurcation analysis result, with H as the parameter. “LP” means limit points. Solid lines

represent stable steady states, and dashed lines represent unstable steady states. (b) The two-

parameter bifurcation result, with H and S as parameters. “CP” means cusp points, and “BP”,

“HP”, and “LP” represent different types of bifurcation points, which we did not elaborate on

in this tutorial. “HP” means Hopf bifurcation points (not present for this system), “BP” means

branching points (not present for this system), and “LP” means limit points. The points labeled

with numbers (e.g., 1, 2) were added by the author for clarity and are marked in orange. These

labels are not part of the raw software output.

We can now include a second parameter in the analysis, S (Table 1). This parameter

represents an important psychological construct, namely arousal schema. It shows how much

a person perceives high physical arousal as a sign of threat. In the original model by Robinaugh

et al. (2024), arousal schema is a variable that changes at a much slower rate, and high arousal

schema is seen as the key mechanism explaining panic disorder. We omitted the dynamic

equation of S in our analysis as it takes an irregular form with if-else conditions and depends
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on the history of the system, thus cannot be analyzed with the methods introduced in this

tutorial. Nevertheless, we can still use S in the two-parameter bifurcation analysis and see how

this variable changes the stability of the steady states. In Figure 4b, we can see that the two

green curves together divide the parameter plane into two regions, (1) and (2). The two regions

have different numbers of stable steady states. From the results of the one-parameter

bifurcation analysis, we can infer that in the small triangle-like area (1), the system has two

stable states, but in region (2), it has only one stable state. Specifically, when arousal schema is

low, there is always only one stable state, but when arousal schema is high, the strength of the

homeostatic feedback determines whether there are one or two stable states in the system and

whether the stable state is a healthy state or a panic state. Thus, the stability feature of the

system is dependent on the joint influence of both variables, and the panic disorder

phenomenon can only be observed when arousal schema is high enough and homeostatic

feedback is moderate.

Analysis withH as a Variable

We then investigate the dynamics of H. To do so, we need to eliminate one of the fast variables

to make the total number of variables two. This can be done by assuming that one fast variable

is always at its equilibrium (i.e., the variable’s derivative is zero). The rationale for this

treatment is that the fast variables approach their equilibrium much faster than H, hence

assuming that they are always at the equilibrium does not affect the results much (Bertram &

Rubin, 2017; Okino & Mavrovouniotis, 1998). Here we arbitrarily chose to solve PT (solving A

would give similar results) from Equation (2). Solving d��/d� = 0 results in:

�� =
1

1 + exp − ��� � − ℎ�,��
. (7)

This equation can be used with the panic disorder model as presented in Equations 1-3 to run

the phase plane analysis and the bifurcation analysis. The results are depicted in Figure 5. We

first look at the phase plane analysis results with arousal schema fixed at a moderate level, S =

0.5 (Figure 5a). Although there is only one stable state in the system, represented by the large

black dot close to (0,0), the system may move in opposite directions under noise: When A is

above a certain threshold (1), it does not directly decrease towards the equilibrium of the

system (the black dot). Rather, A first increases until its value reaches its nullcline (the red line)

and then turns around and decreases again. This is only possible when the nullcline of A (the

red line) has this particular curvilinear shape. If we look along the line of H = 0, there is first a

region (2) where A decreases to make sure that the steady state is stable, then a region (3)

where A increases to make it possible to show spikes, and then a region (4) where A decreases
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again to ensure A will not increase too much. Also, the change rate of H is low enough

compared to A to make sure that the dynamic trajectories (the black curves in Figure 5a) first

almost go along the horizontal direction, so that A can show a clear spike.

Figure 5. Phase plane analyses and bifurcation analyses results of the panic disorder model,

with H as a variable. (a) phase plane analysis result using the default parameter (S = 0.5); (b)

phase plane analysis result with S = 0; (c) one-parameter bifurcation analysis result. The

points labeled with numbers (e.g., 1, 2) were added by the author for clarity and are marked in

orange. These labels are not part of the raw software output.

We then use Figure 5b to see why the system does not have panic attacks when S is fixed

at 0. The results show that the nullcline of A (the red line) moves to the lower right direction,

and compared to Figure 5a, now the intersection point (1) disappears at (5). Therefore, even if

there is noise driving A to higher values around (5), as the state of the system does not cross

the nullcline of A, A will always tend to decrease, which means that there will be no panic

spikes anymore (compare with the trajectories starting from (3)). From the bifurcation

analysis result in Figure 5c, we can see that as long as S is around the range between 0 to 1

(which is always the case in the complete model by Robinaugh et al., 2024), the position of the
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stable state hardly changes. Therefore, the level of physical arousal and the perceived threat of

the healthy stable state will not change following the changes in S.

Brief Discussion

In the analysis example shown above, we investigated the dynamics of the panic disorder

model on two different time scales. For the first one, the fast time scale of A and PT, we found

that both H and S can influence the stability of the system. When S is low, the system always

has only one stable state, the healthy state (Figure 4b). When S is higher, the stability of the

system will depend onH (Figure 4b). If H is at its default value (Figure 3a), the system can have

two stable states, one being healthy and the other being in panic. Therefore, with some noise,

it is possible for the system to move from the healthy state to the panic state. But if H is higher

(Figure 3b), the panic state will become unstable again, and the system will fall back to the

healthy state. The required H value to make the panic state unstable depends on S. The higher

S is, the higher Hmust be to make the panic state disappear (Figure 4b). The second part of the

analysis focused on the slower time scale of H. We found that, because of the shape of the

nullclines, if A is higher than a threshold (1), it will first increase before decreasing back to the

healthy stable state, making panic spikes appear in the time series of A. However, in the long

run, the system always tends to go back to the healthy state as there is only one stable state in

the system.

In Figure 6, we provide an illustration to link the graphical analysis results back to the

simulated time series. For Figure 6c, we zoom into a segment of the time series shown in Figure

1a which represents a panic attack. The two panels above, which are the phase space analysis

results for H = 0 (Figure 6a) and H = 0.5 (Figure 6b), correspond to the stability characteristics

of A and PT with different H values. When H = 0, the subsystem of A and PT is bistable, thus

noise is possible to drive the system from one stable equilibrium to another. However, later H

increases, making the subsystem of A and PTmonostable, forcing the system to go back to the

only remaining equilibrium. This relationship between H and the stability of A and PT can also

be found in the one-parameter bifurcation analysis, shown in Figure 6d. Finally, in the phase

space analysis on the slower time scale (Figure 6e), we can see that after A increases from

random noise, the system’s state has a tendency to go through a long detour before returning

to the previous equilibrium, which corresponds to the phenomenon of panic attacks.

In summary, the key dynamic features giving rise to the spike-like behavior of the panic

disorder model are the following: (1) The nullclines of A and PT may form one or two stable

states depending on H. When H is high, two nullclines detach at the right side, making the

stable panic state disappear. (2) The increase of A and/or PT can lead to a slow increase in H.
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We may change the specific function forms and still create similar behaviors in the system, as

long as the key conditions are met. Robinaugh et al. (2021) tried several alternative forms of

the functions of A and PT and suggested that only the combination of a linear form in the

dynamic function of A (Equation (1)) and the S-shape form in the dynamic function of PT

(Equation (2)) can produce behaviors like panic attacks. Based on the analysis above, however,

we can conclude that this statement is likely not entirely correct. We infer that if both

equations are S-shaped, the model can also show similar behavior. Indeed, we successfully

formulated a model with both S-shaped function forms that matches the phenomenon of

panic disorder, detailed in Appendix G. The graphical tools we propose here, thus lead to a

clearer explanation of why, or what exact mechanism, can lead to specific behaviors in the

simulation results.

Figure 6. The relationship between the graphical analysis outputs and the simulated time

series for the model of panic disorder. The bold, red arrows in panels (a), (b), (d), and (e)

correspond to various features of the time series in panel (c).
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Example 2: Analysis of the Suicidal IdeationModel

To illustrate the generalizability of the proposed methods, we now move to the second

example, the suicidal ideation model by Wang et al. (2023). The model contains three core

variables: aversive internal states (A), urge to escape (U), and suicidal thoughts (T). The model

is specified by Equations 4-6, with the default parameter values shown in Table 2.

The key feature of the model is that, although the aversive internal states and urge to

escape have many peaks and fluctuations, suicidal thoughts are highly zero-inflated and only

have a few peaks (Wang et al., 2023; also see Figure 1b). We now investigate why the system

has this feature. As the system has three variables with similar time scales (Equations 4-6), we

arbitrarily solve out the variableU by assuming d�/d� = 0. From Equation 5, we have that

� =
�3�
�3

. (8)

To investigate how different variables of the system react to random stressors, we use the

variable representing the external stressor, S, as the model parameter in our analysis. The

results are shown in Figure 7. We can see that the system always has a single stable point but

at different locations. As S increases from S = 0.2 in Figure 7a to S = 0.5 in Figure 7b, the

nullcline of A (the red line) moves to the upper right direction, making its intersection with the

nullcline of T (the blue line) move from (1) to (2). The nullcline of T is S-shaped so that at the

beginning, the intersection does not change much in the T axis (Figure 7a). After a threshold

(3), however, the intersection of the nullclines moves to the second half of T’s nullcline, so the

T value of the stable point suddenly increases (Figure 7b). We can see this trend more clearly

from the bifurcation analysis in Figure 7c. Here, as S increases, A increases smoothly, but T

increases abruptly. Therefore, if S randomly fluctuates, we can observe A follows closer with S,

whereas T mostly stays around zero, with occasional large spikes. This follows the simulation

results shown earlier (Figure 1b). Again, in Figure 8, we show another illustration that

emphasizes the relationship between the simulated time series and the results from phase

plane analyses and a bifurcation analysis.

In summary, the difference between the dynamics of A and T can mainly be explained by

the shape of their nullclines. The nullcline of A is close to a straight line with a large, negative

derivative and moves smoothly in the right direction, and the nullcline of T is close to a S-

shaped curve that does not change with S. Again, in Appendix G, we formulated an alternative

model in which the dynamic function of A takes a linear form instead of a quadratic form,

while the retaining the relationship between the nullclines. The characteristics of this model

closely resemble those of the original model of suicidal ideations, yet the alternative model has



Analyzing Formal Dynamic Models in Psychology: A Tutorial

215

9

a simpler form. Therefore, using the analysis methods presented in this tutorial, we can see

that the quadratic expression in the original model (Wang et al., 2023) is not necessary to

produce the phenomenon of interest.

Figure 7. The phase plane analysis and bifurcation analysis screenshots during the analysis of

the suicidal ideation model. (a) is the phase plane analysis result with S = 0.2; (b) is the phase

plane analysis result with S = 0.5; (c) is the one-parameter bifurcation analysis result with S as

the parameter. The points labeled with numbers (e.g., 1, 2) were added by the author for clarity

and aremarked in orange. These labels are not part of the raw software output.
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Figure 8. The relationship between the graphical analysis outputs and the simulated time

series for the model of suicidal ideations. The bold, red circles and arrows in panels (a), (b),

and (d) correspond to various features of the time series in panel (c).

General Discussion

In this tutorial, we introduced two important graphical tools for dynamic systems, namely the

phase plane and bifurcation analysis. We explained the meaning of several important plots of

the analyses, the related code, and the procedure, and we demonstrated the analysis with two

specific formal dynamicmodels in psychology. For the panic disorder model, we found that the

key feature of the system, namely the spikes of panic attacks, come from fast, potentially

bistable dynamics between physical arousal (A) and perceived threat (PT), and a slower
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variable, homeostatic feedback (H), that controls the dynamics of A and PT. When H hovers

around the baseline level, the system of A and PT is bistable, so it may go close to the panic

state under noise. However, this will lead to an increase in H, which makes the system of A and

PT monostable leaving only the healthy state, so that after a short period of time in the panic

state, the system will quickly return to the healthy state. The variable that is even slower, S,

controls the required level of H to make A and PT monostable, thus controlling whether the

system is likely to show panic attacks. For the suicidal ideation model, we found that the

different reactivity of aversive internal states (A) and suicidal thoughts (T) towards external

stressors comes from the shape of their nullclines. The nullcline of A is close to a straight line

and moves smoothly with increasing external stressors (S), whereas the nullcline of T is an S-

shaped curve. When S increases, the intersection point moves along the nullcline of T, leading

to a smooth change in A and an abrupt change in T.

For both models, we proposed alternative forms of dynamic equations that are different

from the original specifications but still meet the key dynamic features we found. This

underscores the importance of the graphical tools we introduced in investigating the

underlying dynamics producing a certain psychological phenomenon. Both adapted models

showed similar behaviors compared to the original models. Therefore, in contrast to previous

arguments by some researchers (e.g., Robinaugh et al., 2021), the alignment between

simulation results and real-life observations does not necessarily provide robust support for

the exact function form used in formal models. This may render further deductions from those

models (e.g., in silico experiments of treatments, Ryan et al., 2025) less reliable. Instead, we

argue that greater emphasis should be placed on the key dynamic features of themodel.

The aim of introducing those graphical methods to the realm of psychology is to gain a

better understanding of the mechanisms underlying certain dynamics. In other words, we do

not only want to have computational models that behave similarly to real-life systems but we

also want to understand which characteristics of the dynamic functions can give rise to a

specific phenomenon, hence feature in the time series. Formal dynamic models are often

defined with a set of functions and parameters. If the simulation results show the key features

of the dynamic model, we can only infer that this specific combination of function forms and

parameter values may be a reasonable candidate model for the phenomenon of interest. The

amount of information we can gain from a single instance, though, is rather little, as there are

many other possibilities of function forms and parameters that may lead to similar results.

Optimally, we at least want to have a group of models featured by a set of similar

characteristics that may give similar results. Many researchers claim that the benefits of using
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formal models are to reduce the ambiguity of verbal descriptions and make the theory more

specific (Borsboom et al., 2021; Fried, 2020; Robinaugh et al., 2021), but relying on a single

simulation model also has the risk of seeing the trees instead of the forest. By focusing on the

characteristics of formal dynamic models instead of specific instances of formal models, we

can balance specificity and generalizability andmake the results more interpretable.

Analyzing the model at the level of dynamic features also enables model comparison

across fields. Several types of models are known in other fields, which may describe very

different phenomena but share certain dynamic features. For instance, excitable models in

biology, originating from the research on neural activation, describe how a system may leave

its equilibrium and go towards another direction, showing a spike in the signal, before

returning to the original equilibrium point (Edelstein-Keshet, 2005; Murray, 1989), are very

similar to the panic disorder model. Thus, the conditions in excitable models may also apply to

formal models of panic disorder. Alternatively, if we want to develop a new model for another

type of psychological phenomenon, and we are aware of models in other fields showing similar

behaviors, we can take those models as a starting point and adapt them for building

psychological models. For example, the Hopf bifurcation, which describes how a dynamic

system transitions from a steady state to a limit cycle and exhibits oscillatory behavior, maybe

a useful starting point to build a model of bipolar disorder and investigate how a client

changes from having a balanced mood to experiencing alternating periods of manic and

depressive phases.

The field of dynamic modeling in psychology (and the domain of psychopathology

specifically) is still in its infancy. Pioneering work in this field (e.g., the models we used as

examples by Robinaugh et al., 2024; Wang et al., 2023; and other models described by Burger

et al., 2020; Schöller et al., 2018; van Dongen et al., 2025) often involves a large number of

variables or constructs, while the resulting dynamics tend to be relatively simple, with only a

few key features of interest. At the same time, it is unclear whether these features arise from

the complex interactions among elements or are primarily driven by one or two functions

specified by the researcher. Having many elements and complex dynamic functions is not

necessarily a problem. However, its level of complexity should be justified by the complexity of

the model’s outcomes.

Here, it is good to refer to the work by Levins (1966), who has defined three purposes of

dynamic modeling: generality, realism, and precision. In reality, those three goals are hard to

achieve within the same model. Generality emphasizes the basic understanding of the system’s

core mechanism. A generalizable mechanism can be transferred to many similar situations but
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goes at the cost of ignoring less important elements and the quantitative predictions may not

be precise. Realism prioritizes resemblance between model and real-life situations, for

example, the number and nature of elements involved, and the forms of interactions.

Practically, this may make the system very complex and hence difficult to disentangle the basic

mechanisms that give rise to the phenomenon. It will also make the model less generalizable to

other, similar situations and the predictive power may actually be weaker compared to simpler

models because of the difficulty of estimating all parameters in such a complex model. Last, a

model can also aim at achieving high precision in prediction. Machine learning models, for

example, would be suitable for this goal, but it is good to be aware that prioritizing prediction

precision usually goes at the cost of the generalizability and realism of the model.

The field of psychology currently lacks a basic understanding of the core dynamical

mechanisms underlying many psychological phenomena. Striving for high realism by

constructing complicated models involving many variables, might therefore be premature.

Given that most simulation outputs are only qualitatively compared to empirical data, aiming

for high precision also seems less relevant. We therefore advocate prioritizing the

generalizability of the underlying mechanisms of the system by building simpler models with

fewer core variables, facilitating investigation and interpretation. The introduced methods

greatly contribute to this endeavor because they allow for a more systematic investigation of

formal models, thereby expanding the potential of formal dynamic models in advancing

psychological theories.
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The general aim of this thesis was to advance the analytical tools in the complexity

science of psychology, focusing on three main parts: the stability of complex psychological

systems, the critical transitions in clinical trajectories and their early warning signals, and the

nonlinear dynamic interactions between psychological variables. I will first discuss the

findings in these three parts. After that, based on the findings in this thesis, I will reflect on the

current status of complex system research in psychology and discuss several challenges and

future directions. Finally, this thesis will end with a narrative reflection on the PhD project as a

whole.

Discussion of the Findings

Using Potential Landscapes as a Description of Psychological Dynamics

This thesis started with several chapters introducing potential landscape methods. The

potential landscape is naturally defined for gradient systems, and its generalized version can

be used to describe a wider range of dynamic systems. Although several types of potential

landscape definitions are available (Zhou & Li, 2016), in this thesis, I focused on the definition

based on the steady-state distribution, because it poses fewer restrictions on the form of the

dynamic functions, and therefore, is the easiest to apply for psychological systems. Other

methods may be more advantageous for certain needs, as I discussed in Chapters 2-3, but they

are less suitable for psychological systems that usually contain a large number of elements

with complex interactions.

Describing dynamic systems with landscapes inevitably sacrifices some information. The

non-gradient part of the system cannot be described with landscapes. This may correspond to

the periodic trends, for example, in bipolar disorder. Also, as landscape visualizations can only

be drawn in up to three dimensions, they cannot represent dynamic features in higher

dimensions. Nevertheless, the stability of states is often more important for psychological

systems, as many psychological theories can be described as the characteristics of stable states

(e.g., depressive states, healthy states). Therefore, the potential landscape can still serve as a

useful simplification of the overall dynamics.

The landscapes for psychological systems are typically bounded within a certain range.

While the system’s state may transition from one phase to another, it generally remains within

a plausible region of the state space and will not diverge toward infinity. This feature may be

bound by measurement techniques, but may also show the intrinsic, adaptive nature of

psychological systems: the mental state of a person tends to be relatively stable and often

returns to previously visited states rather than moving in a certain direction endlessly. The
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adaptive, stable nature of psychological systems is different from many other fields. In RNA

dynamics, for example, the molecules often degrade over time (Qiu et al., 2022); in cell

differentiation, cells will die out in the end (Waddington, 1966); and in image processing, the

vector fields representing lens movement typically do not converge to a stable point (Ma et al.,

2013). Methods in these fields typically do not assume the system’s state is relatively stable.

This is the main reason why we could not apply some methods from other disciplines directly

but needed tomodify them in Chapter 4.

The landscape from Ising networks is different from others because they are not

estimated from time-series data, and therefore, do not have an intrinsic definition of dynamics.

Some technical approaches, such as the Glauber dynamics (Glauber, 1963) and the Metropolis

algorithm (Binder & Luijten, 2001), can be used to perform simulations from Ising networks,

but they are mainly intended to approach the steady-state distribution of the system instead of

resembling the actual change process. In Chapter 5, we also discussed the potential issues of

using cross-sectional data to infer the stability of a system, and we restrict the inferences of

such a method to the group level. Nevertheless, the method described in Chapter 5 still

represents a prototypical instance to describe the stability of networks. With some adaptations,

similar approaches can be applied to a wide range of network models and help to connect the

statistical network models and the theoretical ideas of symptom networks (Hoekstra et al.,

2024).

In this thesis, I described two methods to construct potential landscapes for empirical

data, one through the vector field estimations using fitlandr (Chapter 4), and the other

through network models (Chapter 5). The choice between the two methods depends on an

inevitable trade-off between the amount of data available, the number of variables included in

the model, and the complexity of the relationships among them. Whereas the vector field in

fitlandr supports more flexible relationships between two variables, it cannot generalize to

higher-dimensional cases. In contrast, Isinglandr can model multiple variables, but they can

only take binary values and have logistic relationships with each other. Moreover, fitlandr is

designed for idiographic, longitudinal modeling with limited data length, yet Isinglandr only

supports cross-sectional data collected from a large group. Technically, it is possible to

construct Ising-like longitudinal models and construct landscapes from there (e.g.,

Schumacher et al., in preparation), but the resulting model will deviate from the original Ising

model, requiring a different estimation procedure.
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Rethinking EarlyWarning Signals and Critical Transitions

The past few years have witnessed speedy growth in the research of early warning signals in

psychology (Figure 1). Recent reviews by Helmich et al. (2021, 2024) highlighted the

inconsistency of results and the difficulty in applying EWSs in clinical settings. The

inconsistency of EWS results may not necessarily be a problem. As argued by Olthof et al.

(2020), the control parameter of the systemmay not always change monotonically; the system

may experience a short period of instability and then fall back to the previous phase. In this

scenario, although no transition is observed, EWSs are still valid signals of the instability of the

system. Although this argument is valid in theory, it is not easily falsifiable by empirical studies,

as the instability of the system is difficult to measure. One possible opportunity is to test

whether interventions during unstable periods can yield better outcomes. This approach has

been pursued recently by Olthof et al. (2025), although further investigations are still

warranted.

Chapters 6 and 7 in the current thesis took a more theoretical and abstract approach to

critically assess whether the research practices used in earlier studies, though seemingly

intuitive, are appropriate to identify EWSs. The theoretical background of EWSs differs from

most psychological theories. In the case of EWSs, specific statistical patterns, such as

increasing variance and autocorrelation, can be mathematically derived under certain

conditions, whereas predictions in psychology are often based on verbal reasoning and

empirical generalizations. The mathematical derivation guarantees that, if all the required

conditions are met, EWSs should appear before transitions. The only thing left is how to

develop effective assessment methods to detect them. In real-life systems, it is difficult to

verify each condition of EWSs. Nevertheless, if certain practices are clearly inconsistent with

the conditions required for EWSs, the resulting statistical indicatorsmay not be genuine EWSs.

In Chapter 6, I explained several important conditions based on the theoretical deviation of

EWSs and pointed out some inconsistencies between theory and common research practices in

the field. As a result, many EWSs reported in previous studies may not be valid. While the

changes in statistical indicators, such as increases in variance or autocorrelation, may be real,

they are not likely to stem from system destabilization.

But how should we understand clinical transitions if the dynamic instability is not the

underlying course? I offered a preliminary answer to this question in Chapter 7, where I

introduced multiple types of transitions and their underlying mechanisms. In complex

dynamic systems, numerous factors may serve as the direct “cause” for a critical transition.

Understanding each cause at every level of various systems is clearly not feasible. Therefore, I
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limited the discussions in Chapter 7 to a certain level of abstraction. Instead of looking at

specific causes, researchers in dynamic systems have summarized several major causes of

transitions, including the destabilization of attractors (B-tipping), random fluctuations (N-

tipping or N-diffusion), or the rapid movement of the position of the attractor (R-tipping).

These types of tipping have distinct theoretical implications and may lead to different

observations. Although I identified several major difficulties in distinguishing these transition

types, I still see clear benefits to introducing these types to the psychopathology field. With

these possible types in mind, we can go broader in ideas and find more plausible explanations

for empirical observations. For example, the time series of momentary affects are more likely to

have N-diffusion instead of B-tipping. This also echoes the discussion in Chapter 6: if

researchers had known the types of transitions prior to designing their studies, would they

have still chosen to calculate EWSs frommomentary affect?

Figure 1. The frequency of articles including the phrase “early warning signal(s)” in (a)

literature in the psychology domain, and (b) in all domains. Data was acquired on April 24th,

2025, through theWeb of Science database (Clarivate, 2025).
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Approach Nonlinear Dynamic Interactions

The next two chapters of this thesis focused on nonlinear relationships among variables,

which are notoriously difficult to detect from empirical data. Compared to the previous two

parts, this part of the work addressed amore fine-grained level of dynamic systems.

In Chapter 8, I introduced a new method of quadratic vector autoregression (quadVAR).

The method features a systematic variable selection procedure that applies to both the linear

terms and the quadratic or interaction terms. The results of the regression can be easily

interpreted using linearized networks. The method’s general performance was modest,

especially in the classification metrics of parameters, yet it also showed promise in discovering

nonlinear relationships for exploratory purposes. Given true psychological systems are never

linear, should empirical researchers consider using more nonlinear analysis methods? Of

course, more flexible methods often come with lower statistical power and more severe over-

fitting issues. Those issues are especially prominent when themethods are applied to relatively

short time series collected by self-reports, as is typically the case in psychological research.

With these considerations, I would suggest that nonlinear autoregression methods should

always be applied with caution and carefully validated, possibly using information criteria and

cross-validation. Yet when linear methods are used, researchers should also routinely check

the linearity assumption. This can be done, for example, by using the quadVAR method and

looking into any nonlinear relationships found there.

The difficulty in estimating nonlinear relationships from data also motivates the field of

formal dynamic models, which use a top-down approach to infer these relationships between

variables from theoretical insights and expert knowledge. Early work in formal dynamic

models relies on simulations, which intuitively describe how a system changes over time.

However, simulation-based methods do not provide a direct explanation of why certain

dynamic relationships produce certain global system behaviors. In Chapter 9, I introduced a

more analytical approach to examine how the combination of nonlinear dynamic functions

gives rise to the system’s attractors. The main strength of this approach is the use of

mathematical stability analysis, which is not dependent on the specifications of simulations,

such as the parameter settings, initial state of the system, and noise strength. In a simulation,

it is possible that the system only starts around one attractor and never goes to others, or that

two attractors are too close to be visually distinguished. These issues can be solved with the

stability analysis methods, as the equilibrium points of the system in the whole state space or

parameter space can be found using dynamic equations. Other advantages of the approach in

Chapter 9 are better computational efficiency and a clearer link between the function form and
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the system’s behavior. On the other hand, this method requires a more detailed analysis of the

model, including splitting the levels of interest (a topic also discussed in Chapter 7) and

adjusting the dynamic functions accordingly. For dynamic models with many different

elements and complex forms, this can be challenging.

A Reflection on Complexity Science in Psychology

Till here, the current thesis has explored multiple approaches rooted in complex systems

research and applied these to psychological questions. It is often stated that complex systems,

although different in nature, show similar behaviors. However, this does not mean that we

have a single methodology that can be applied to all complex systems. On the contrary, we

must better understand the characteristics of these systems and treat themwithmore care and

nuance.

I first illustrate this point with the large variety of systems that may fall into the term

“complex systems” (Figure 2). A complex system (or a model of one) may represent dynamics

arising from a single element (e.g., the logistic map), several elements (e.g., the Lorenz model),

or billions of elements (e.g., a neural network in the brain). The elements in a system may be

exactly the same (e.g., atoms in the Ising model in physics, the molecules in a crystal),

somehow similar to each other (e.g., people in a social network, variables in a correlational

network, but see Molenaar, 2004, for the ergodicity conditions), or very different from each

other (e.g., the servers, cables, personal devices, and humans for the Internet). The form of

interactions between elements may be linear (as assumed by VAR networks), slightly

nonlinear (the ReLU function used in artificial neural networks), or highly nonlinear (e.g., the

influence of psychotherapy on a patient’s mental state). The system may have a specific

function designed by humans (e.g., a computer program, the supply chain system), evolved

naturally to adapt to the environment (e.g., an animal in its environment), or be purely

functionless (e.g., the logistic map or the Lorenz system). The system may be dominated by a

rather small number of clearly defined elements and their interactions, or can only be

understood as the overall dynamic features (Wallot & Kelty-Stephen, 2018). The key models or

methods developed in this thesis also apply to different types of complex systems, summarized

in Table 1.

If the system of interest is (assumed to be) simple enough, maybe it is legitimate to use

one solution for all. For example, a large amount of empirical work in psychology seems to

assume that the influences of different predictors on an outcome variable are linear and

additive. Under this assumption, it makes sense to use a single method, namely linear
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regression, for all kinds of research questions regardless of the exact content of the variables of

interest. That is why we see in many psychology studies that statistical methods seem to be

less dependent on the specific research question.

Figure 2. Examples of complex systems or their models. This figure includes images from

Wikimedia Commons: logistic bifurcation map (Macias, CC BY-SA 3.0), Lorenz attractor

(Dschwen, CC BY-SA 3.0), neural network diagram (KelvinSong, CC BY-SA 3.0), sociogram

(Moreno, Public Domain), fMRI brain scan (Beao, Public Domain), and Internet structure

(BWenk, CC BY-SA 4.0).

Table 1. Models and topics covered in this thesis, and the type of complex dynamic systems

they apply to.

Model/topic
Related

chapter(s)

Number

of

elements

Similarity

of

elements

Complexity

in the form

of

interactions

Adaptivity

Component-

or

interaction-

dominant

simlandr/formal

dynamicmodels

2-3, 9 Small Low High Low Component

fitlandr 4 Large Low High Medium Interaction

Isinglandr 5 Medium High Medium Medium Both

EWS/transitions 6-7 Large Low High High Interaction

quadVAR 8 Medium Medium Low Medium Component

Note. For adaptivity, I label the models or topics that are directly related to the adaptive

functions of individuals as “high”, those fitted from individuals’ data as “medium”, and those

generated from theories with unknown outcomes as “low”.
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For complex systems, some principles can be applied to systems with similar structures

regardless of the specific nature of the elements. For example, the Ising model in physics

describes the magnetism of matter, whereas the Ising model in psychology describes the

symptoms of mental disorders. Nevertheless, they both show bistability as they have similar

forms of interactions among variables. We can also consider the example of early warning

signals, which are observed in ecology, physics, and finger movement, as long as a system

under a small noise undergoes bifurcation-induced tipping (Scheffer et al., 2012).

However, this generalizability does not mean that anything found in many complex

systems is automatically applicable to a new complex system, simply knowing that the new

system is “complex”. This becomes evident when we examine how key concepts, such as

complexity itself, are operationalized differently across disciplines, sometimes even in

contradictory ways. For example, there are many measures of the complexity of a system. In

the case of the logistic map, its Kolmogorov complexity (the length of the shortest computer

code that can produce the output, Korotkich, 2001) is rather small and does not change for

different control parameter values, because the system’s output can always be generated with

some simple computer code. Yet, the system’s dynamic complexity (a combined indicator of

fluctuation and spreading of a time series) is quite high in the chaotic regime and increases as

the control parameter grows. Another related example we found is that, although dynamic

complexity sometimes behaves similarly to permutation entropy (Schiepek & Strunk, 2010),

they may go in opposite directions before a sudden change (see https://osf.io/hxqzf for an

example).

Therefore, it is important to realize that borrowing concepts, theories, and methods

within the complexity science regime actually requires much caution. This is sometimes

overlooked in previous literature, especially from social sciences, where theories are often

based on verbal reasoning, and researchers are not used to checking the formal conditions of

theories (Sussmann & Zahler, 1978; Wagenmakers et al., 2012; but also see Oliva & Capdevielle,

1980). In psychology, this issue has been raised by various researchers for some specific

disciplines. For example, the use of centrality measures from physical networks may not be

meaningful in correlational networks (Bringmann et al., 2019), and the interpretation of the

first EWS results was also questioned at the early stage (Bos & De Jonge, 2014). The complexity

of psychological systems suggests that we can only investigate a small aspect of the system in a

single study, which requires methods that are specifically suitable for this aspect.

Here, it may be tempting to ask: To which category do psychological systems belong?

Knowing this, perhaps we can rule out some methods that are inherently unsuitable for
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psychology and focus on the most suitable category. While many researchers have argued that

real-life psychological systems are idiographic, interaction-dominant, non-decomposable, and

exhibit strong complexity (Hasselman, 2023; Olthof, Hasselman, Oude Maatman, et al., 2023;

Oude Maatman & Eronen, 2025), I maintain that the level of these characteristics (Table 1) in a

specific research question still requires further empirical examination. Note that the point I

want to make is more at the epistemological level rather than the ontological level: Even if a

model assumes a much simpler system than the actual one, it may not necessarily be a bad

model, as a good simplification that removes unnecessary complexity can often help problem-

solving, and a complex model may actually hide simple mistakes. To select a suitable research

method for a given question, what is important is determining which model is the most

suitable for a given empirical question (i.e., it captures the most important facet of the target

system for the research question), not which model is the most similar to the target system. Of

course, once we have gained sufficient knowledge about the target system, we can add more

details to the model to make it better resemble real-life systems. However, this must be built

on a solid foundation — we cannot skip over Newtonian physics and jump directly to the

theory of relativity. Given that complexity research in psychology is still in its early stages and

that various types of research questions exist in the field, I believe it is too early to say that any

method is generally inappropriate. It is likely that many methods will find their place in

different disciplines. More effort should be focused on determining which methods are most

suitable for specific purposes.

For the future of complex systems research in psychology, I take a cautiously optimistic

stance. On the one hand, it is hard to refute that psychological phenomena are inherently

complex, thus, a reductionistic, over-simplified view misses many vital details. On the other

hand, adapting concepts and even some methods from the complexity sciences is not likely to

produce massive progress in the near future. This is not only due to the technical framework

yet to be established, an issue that the current thesis aims to contribute to, but also deeper

philosophical questions remain. For instance, what are the psychological constructs, and how

can they best be measured? What can we assume about psychological dynamics, and are

current methods based on valid assumptions? What can we hypothesize to be the basic

principles governing psychological phenomena, and are those principles falsifiable? Compared

to incremental research that heavily relies on existing work (some of which ultimately rests on

unvalidated assumptions), those fundamental questions are harder to answer, but they need

to be carefully treated withmore creativity.
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Moreover, we also need to investigate the similarities and differences between

psychological systems and other complex systems. Although psychological systems are more

difficult to measure and perform experiments on, psychologists also have the advantage of

being able to talk to participants and make use of participants’ memory and reasoning ability

(Rozin, 2001; also mentioned in Chapter 7). Therefore, qualitative or mixed-methods studies

should also be considered (e.g., Bossenbroek et al., 2025; Hulsmans et al., 2024). Those

methods may provide unique opportunities for understanding psychological systems, and

compensate for the disadvantages of data length and assessment accuracy.

Future Directions

I suggest the following directions for the further development of complex system methods in

psychology. First, we need better integration and an overview of different methods, their

applicable conditions or underlying assumptions, and the meaning of their outputs. Many

methods have been developed in the field of complex systems, yet their differences are not easy

to grasp. As a result, empirical researchers sometimes just start with the statement that

psychological systems are complex and simply choose analysis methods that are readily

available to them, which often depends on the computational and tutorial resources that they

can access, without questioning what the most suitable method for a given research purpose is.

In Table 2, I list some methods I am aware of and their key characteristics. From this point

onward, a more comprehensive analysis is still needed to further clarify their advantages,

disadvantages, and suitable use cases.

Table 2. Several types of complex system methods have been applied to psychological

phenomena.

Type of methods Examples

Wave-or-signal-

based

Dynamic complexity (Schiepek & Strunk, 2010), change point analysis

(Cabrieto et al., 2017; Lewis & Stevens, 1991; Matteson & James, 2014),

statistical process control (Schat et al., 2023)

Recurrence-based Recurrence quantification analysis (Marwan et al., 2007), recurrence network

(Hasselman& Bosman, 2020)

Stability-based fitlandr (Chapter 4), Ornstein-Uhlenbeck model (Oravecz et al., 2009),

Fokker-Planck equationmodel (Tschacher & Haken, 2020).

Network-based Network psychometrics (Borsboom et al., 2021), social network analysis

(Borgatti et al., 2009)



Chapter 10

232

Second, methodological and theoretical developments may also enable new possibilities

for empirical study design. Take the correlational network analysis as an example, an

important question here is what variables should be included in the assessment. Complex

systems may also inspire new assessments. For example, if we care more about the variability

of a variable instead of its absolute value, we may ask comparative questions in experience

sampling questionnaires (e.g., how much do you think you are happier than the previous

assessment), which may be more accurate than calculating the variance of the absolute value.

If we want to know how far a person is from a stable state, we can also explicitly ask the

participant how much more stressed they are compared to a specific situation that the

participant can imagine (e.g., a safe place with a relaxing environment). This requires some

imagination ability from the participant but may be feasible as similar approaches, such as

guided imagery and imagery rescripting, have long been used in psychotherapy (Arntz, 2012;

Cumming & Anderson, 2013). To know which questions can best assess the multistability of a

person’s mental state, we may also ask the participant to come up with customized questions

that can best distinguish this person’s different (e.g., happy and depressive) modes. The most

suitable questions may be highly heterogeneous among people, but can better describe

multistability than standard questionnaires (Olthof, Hasselman, Aas, et al., 2023). We may

also ask counterfactual questions, as mentioned in Chapter 7: for the events or event series that

led to a transition, participants could be asked: Do you think that would also have led to a

transition if it had happened at another time?

Third, we should continue adapting methods from other fields. The methodology across

different scientific fields is sometimes more similar than it appears to be, although different

terminologies may hinder mutual communication. Developments in psychological modeling

may stem from previous psychological models but are also likely to come from other fields,

such as biology (Chapters 2-5, 8-9), economics (Chapter 5), or ecology (Chapters 6-7). The

development of such methods requires more interdisciplinary collaborations, as well as more

interdisciplinary knowledge from psychologists to enable such crossing across disciplinary

borders. Psychologists should also develop the ability to describe phenomena in an abstract

way (e.g., in mathematical formulas or pseudo-codes), a skill that could be facilitated through

more interdisciplinary courses, workshops, and educational materials. Another opportunity

comes from recent developments in artificial intelligence, which may provide tools to search

for relevant information across disciplines or translate useful terminologies from different

fields (Jones, 2023).
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Epilogue: HowDid All These ThingsWork Out?

By the time I started my PhD project, I had no clue how things would develop throughout the

coming four years. A lot of exploration, trials, failures, and progress together shaped it into its

current form. Looking back on the past four years, I feel I enjoyed the PhD project a lot, and I

also realized my PhD path was quite unique among the colleagues I know. Therefore, I would

like to share some experience I gained during this project, which may be interesting for those

who are also considering a curiosity-driven PhD project, even without a very mature plan at

the beginning. I summarized the timeline of this PhD project in Figure 3, and an interactive

version of it can be found at https://jingmeng-cui.netlify.app/assets/files/PhD_timeline.html.

Figure 3. The timeline of this PhD project.

Several characteristics of this project are interesting to discuss. First, learning by trying is

a central theme of this project. Compared with empirical work, the methodological and

theoretical work presented in this thesis was less straightforward to plan. Sometimes it was

clear that there were methods available in other fields, but unclear whether they would work

for our situation. Sometimes we did not know if the technique would exist at all. Although the

general directions were set at the beginning of the project, concrete plans only emerged along

the way; some directions were discovered after explorations, and some were based on the work

that was established during my PhD. Many of the methods we use are rather new. The core
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idea of the simlandr (Chapters 2-3) is based on the idea by Wang et al. (2008), which was

further mathematically validated by Zhou and Li (2016); the Isinglandr project was based on

the work by Lunansky et al. (2024) that I only heard halfway through the project; the core idea

of the fitlandr (Chapter 5) was based on Qiu et al., (2022), with the MVKE algorithm by Bandi

andMoloche (2018); the quadVARmethod (Chapter 8) was based on the RAMP algorithm, Hao

et al. (2018); the idea of introducing the graphical analysis tools to psychology emerged during

the master’s thesis project of Gruppen (2023). The chapters about EWSs (Chapters 6-7) also

deviated from the initial plan, which was to refine the EWS detection methods to yield better

prediction power. More substantive issues were found during the exploration phase, so instead

of improving the accuracy, we focused on examining the consistency between theory and

method.

Second, information searching played an important role. We not only needed to solve the

problem but also needed to define the problem clearly, sometimes using terms from other field

s, and find out to what extent the problem could be solved. Also, many efforts were made in im

plementation, which required coding in R as well as some knowledge of other programming la

nguages, such as C, C++, MATLAB, and Python.When there are multiple methods available, it i

s also important to find comparison articles and choose the situations that are close to psychol

ogical applications. It is even better to find algorithms with available implementations, but I n

oticed that it is important to be aware that existing algorithms may contain errors, especially

when the package is intended for a very specific field without being tested by many users (e.g.,

the patched version of RAMP, https://github.com/Sciurus365/RAMP, and Cui et al., 2023). Ther

efore, when building on others’ work, it is also important to check the output carefully and und

erstand the code before using it.

Third, the project also features a relatively large proportion of examination or correction

compared to new developments. After all these years, the application of complex systems in

psychology is still experimental1. Sometimes, new methods attract more attention than work

pointing out issues in previous methods. Does that mean correction has less value than

creation? I would not agree. The value of efforts in reproducing empirical research has been

increasingly recognized in the past decade (Open Science Collaboration, 2015), and many

researchers have realized that robust findings are better than fancy findings. A similar idea also

needs to be recognized on the methodological side (Borsboom, 2006). Of course,

methodologists do not always agree with each other. In this case, more open discussion is

certainly helpful in clarifying the viewpoints and outlining the pros and cons of each approach.

1 Adapted from the statement about the “casnet” R package by Fred Hasselman.
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Last, and importantly, this project is inherently interdisciplinary, and my

interdisciplinary background certainly played a key role in its development. As mentioned in

the prologue, I began my academic journey in chemistry. Although the techniques I learned

there were not directly involved in any of the projects, the mathematics, natural sciences, and

coding bases I gained there certainly have paved an easier route for me to understand more

advanced and specialized techniques. The intuition I gained in natural sciences also motivated

several key ideas applied in this project. At the same time, I also completed my bachelor’s and

master’s degrees in psychology, which allowed me to develop both a solid foundation and an

understanding of the state-of-the-art in the psychological field. In addition, I was fortunate to

work with a research team of collaborators who shared similar interests and brought diverse,

specialized expertise. Those aspects all contributed to the completion of this thesis. As shown

in a recent study by Xiang et al. (2025), the success of interdisciplinary research does not rely

on topic-interdisciplinary (inferred from the abstract of articles), but on knowledge-based

interdisciplinarity (inferred from the references of articles). Indeed, the studies included in this

thesis would not have been possible without a working knowledge of both psychology and

other disciplines. Only by combining solid knowledge from different fields can

interdisciplinary research reach its full potential and yield meaningful insights.

Life is certainly a very high-dimensional system with many ups and downs. This is

especially prominent if we talk about doing a PhD, a rather lonely and uncertain journey. You

own the whole project yourself, although supported by supervisors and colleagues, and you

never know whether something you try will work out, and how other researchers will evaluate

your work. Everyone has experience with good and bad periods, but for me, it is also

interesting to see how my research project gave me more insight into the process of staying in

or moving between good and bad periods.When you are in a good or a bad period, you feel you

are stable or stuck there, and much of what you do “automatically” may just strengthen the

phase that you are in, as a positive feedback loop is required for multistability. For instance,

you had a good night of sleep, got up early in the morning, felt fresh, had nice ideas at the office

and smoothly got the work done, left the office early and happily, hit the gym and felt energetic,

tried a restaurant for the first time and had a very good dinner there, went back home and

played some video games together with friends before going to bed early and having a good

sleep. Alternatively, you had a bad sleep, got up late, rushed to the office feeling guilty, looked

at the work today but didn’t want to start anything, just spent some time on social media and

got more nervous, headed home only when the building is closing, went to the supermarket

but didn’t feel like eating anything there, ended up buying something fast and not tasty, after
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dinner just wanted to lie on the couch and watch short videos without realizing it’s already

very late, had a difficult time before being able to sleep.

Both these types of days can happen and did happen to me during my PhD journey. What

they illustrate is that each step in the process increases the possibility of a certain next step,

forming distinct attractors. Being different from the bi-dimensional case, the thing about high-

dimensional attractors is that if you somehow notice it and want to change the trajectory,

changing only one thing in the chain of events will still keep you super close to the original

attractor. Thus, changing one single step will not push you from the negative loop to the

positive one. Let’s use math again; if there is only one dimension, changing one variable is

enough for you to go from (0) to (1); if there are two dimensions, changing one variable can

make you be as close to both attractors (0, 0) and (1,1); but if there are 10 dimensions, changing

one variable only brings you from (0,0,0,0,0,0,0,0,0,0) to (1,0,0,0,0,0,0,0,0,0), which is still

far away from (1,1,1,1,1,1,1,1,1,1).) The strength of attraction, or the depth of the basins, then

translates to whether the previous step is realized in the chain, and how likely the next step is

still in the chain. If you are already in the bad loop and want to go to the good one, simply

changing one thing will not be enough. You either need to consciously maintain the good loop

for a while, even if you don’t want to do the things there, by using your determination or going

to another environment where maybe the weather is better, friends are around to support you,

the food is more delicious, or work pressure is less. This way you make the good loop more

attractive, and easier to start andmaintain. Although this idea is not a part of my PhD research,

it may be a good way to end this thesis, as it nicely shows how research and researchers grow

each other in a complex, dynamic way.
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Appendix A. SupplementaryMaterials for Chapter 2

A1. Stability Analysis

Figure A1. dPT/dt vs PT plots for different AS values. The dash lines represent the zero value of

the y-axis.

Table A1. The real part of the dominant eigenvalues at three equilibrium points of the system.

Re(λd): the real part of the dominant eigenvalue; EP: equilibrium point. The balance points are

numbered in the order of increasing PT.

Re(λd)

AS EP1 EP2 EP3

0.3 -1

0.5 -1

0.7 -1

0.9 -1 0.824 -1

1.1 -1 0.925 -1

1.3 -1 0.979 -1

1.5 -1 1.016 -1

1.7 -1 1.044 -1

1.9 -1 1.066 -1
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A2. Checking Convergence

Figure A2. The density distribution of fear and AS in the initial, middle, and final stages of the

simulation using the simplified model. The length of the simulation is 107 timesteps. For each

stage, 30% of the whole sample was selected. The pseudo-logarithm transformation from the

scales package (Wickham & Seidel, 2020) is used for the y-axis to present density values that

vary much in magnitude.
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A3. Practical Information on Programming Issues

In the main text, we mentioned that because the landscape construction algorithm requires

long simulations, the simulation function itself should be fast enough. Improving the

performance of codes is a complex issue and the optimal solution differs from case to case (see

Wickham, 2019, for an overview). Besides the tutorial paper for the simlandr package (Cui et

al., 2021) and our replicable materials (https://osf.io/ke3xb/), here we also list several possible

directions based on our experience. This section may be helpful if you plan to apply our

methods to your ownmodel.

First, profiling the function is a useful way to find out which parts of the function take the

most time and memory. The profiling output is often a graph or table which shows how much

time or memory the program used to execute each row of codes. It clearly shows the bottleneck

of performance. Optimizing these bottleneck steps, if possible, can yield the best improvement.

For pure R codes, profiling can be done with the profvis package (Chang et al., 2020) or the

profile package (Müller, 2021b). For C++ or Rcpp codes, you may use the pprof tool

(https://github.com/google/pprof) or the jointprof package (Müller, 2021a). In our case,

profiling showed that the most time-consuming step of the original function was not the

simulation computing per se, but the maximum value of a constant vector was recalculated in

each timestep. Removing that resulted in a dramatic decrease in running time.

Second, for those with more programming experience, you may try to rewrite your R

codes in Rcpp (Eddelbuettel & François, 2011), which typically increases the running speed. It

is often not possible to divide dynamic simulation functions into several parts, but whenever

that is possible, you may try to use parallel computing which computes those parts

simultaneously instead of doing one after another. This can be done with the parallel package,

which is a part of R (R Core Team, 2021), or the foreach package (Microsoft &Weston, 2020).

Finally, increasing the noise of the system may help to increase the effective sample size,

or in other words, make it easier to achieve ergodicity. This is similar to the issue of the

variance of proposal distribution in Metropolis sampling (Gelman et al., 1997): when the

system is easier to travel to distant regions, a single data point contains more information

about the system. However, we should bear in mind that as the noise increases, the property of

the original system may be altered to a large extent (as discussed in the Limitations and possible

pitfalls section of the main text). In our experience, if the noise strength is too high, the model

may crash because one or more variables of the system become infinity (thus it is important to

check the range of the variables before putting the simulation output into a landscape

construction function). This issue is especially common when the step size of the simulation is
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large (i.e., the continuous process is approximated by a discrete function that is too rough),

and when the dynamic functions are only properly defined in a limited domain. Some trials are

often needed to define the optimal magnitude of noise.

A4. Equivalent Chemical Representations

For many psychological formal models, the forms of the functions are similar to those for

chemical dynamics. Comparing the two can help to understand the psychological models from

another perspective, and potentially enable to borrow the methods from that richer field. Here

we use this model of panic disorder as an example to illustrate how to find the equivalent

chemical representations. Note that this section mainly serves as a bridge to the chemical

dynamics. It does not contain additional technical information by itself, and some background

in biochemical modelingmay be required for the understanding of the materials.

The dynamic models take a limited set of functions. In the panic disorder model, the basic

components are the following (where A and B represent variables, and r, h, and p represent

parameters):

1.
d�
d�

=− ��

2.
d�
d�

= ��

3.
d�
d�

=− ��

4.
d�
d�

= � ��

��+ℎ�

5.
d�
d�

=− � ��

��+ℎ�

Correspondingly, there are several kinds of chemical functions for which the changing

rate of the species follows the equations above (where X represents an unknown species with

constant concentration).

1.

2.

3.

4.

5.

For the readers unfamiliar with chemical formulas, this paragraph provides a short

introduction to them. The first three reactions are elementary reactions. According to the law

of mass action, the rate of reaction is proportional to the product of the concentrations of the
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reactants. Formula 1 is a self-decomposition reaction, in which A decomposes automatically.

Formula 2 and 3 are catalyzed reactions. In Formula 2, A is produced from an unspecified

species X with a constant concentration, with B as the catalyst. In formula 3, an unspecified

species Y is produced in a similar process. Then, Y quickly reacts with A. Because the second

step is much faster, the rate that the concentration of A decreases equals the rate that Y is

produced, which is proportional to the concentration of B. Formula 4 and 5 are Hill processes.

These formulas do not obey the law of mass action because the enzyme has a special property:

as more reactants bind with the enzyme, the reaction speed becomes faster. (A well-known

large molecule with this behavior is hemoglobin, which binds oxygen molecules faster when

there is already one bond molecule.) See Keener and Sneyd (2009) for a comprehensive

introduction to this topic.

Using these correspondences, we can rewrite the dynamical equations of the original

model in the form of chemical reactions (Table A2).
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Table A2. Equivalent chemical reaction representations of the dynamical functions in the

model of panic disorder. Xs are unspecified species with a constant concentration; vmax, Km, and

n are the rate parameters for Hill reaction.

Dynamical equations Chemical reactions

d�
d�

= �� ���,��� − � − ��,��

d�
d�

= ��
���,�

���,� + ℎ�,�
��,� − �

d��
d�

= ���
���,��

���,�� + ℎ�,��
��,�� − ��

− ��,���

d�
d�

= ��
�����,�

�����,� + ℎ��,�
���,� − �
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Appendix B. SupplementaryMaterials for Chapter 4

B1. Equivalent Vector Fields and Potential Functions for VAR andOUM

In the main text, we present fitlandr, a method to estimate vector fields and potential

landscapes for psychological systems. Many previous methods, such as the VAR model and the

OUM can also be represented in vector fields and potential landscapes, but in their specific,

restricted forms.

In a two-dimensional VAR(1) model, the state of the system is a linear function of the

previous state plus a noise term:

� � + 1 = � + �� � + � � , 1
in which � is a constant term and � is the parameter matrix. We can rewrite this equation in

terms of the differences between time points:

Δ� = � � + 1 − � � = � − � � � + � + � � . 2
Only the first two terms are deterministic. Therefore, � � = � − � � � + � is the vector

field for the VAR(1) model. As in the difference equation, the vector field function is also

restricted to be linear. We draw the vector field of an arbitrary example, where � =
0.1 0.2
0.3 0.4 , � = 0.1

0.1 , in Figure A1a. Note that because the equation is linear, in usual cases

there is only one point where � � = �, which means there is only one stable point.1 Therefore,

it is not possible to show bistability with a VAR(1) model.

To construct a potential landscape for a VAR(1) model, we estimate the steady-state

distribution from simulation, with the noise term drawn from an arbitrary bivariant normal

distribution with Σ = 0.1 0.05
0.05 0.1 . The resulted landscape is shown in Figure A1b.

The OUM assumes the system always tends to go back to a balance point (Kuppens et al.,

2010; Oravecz et al., 2011):

d� =− �� � − � d� + �d�, 3
where � is the local minimum (referred to as the home base by Kuppens et al., 2010) of the

system, � is a vector specifying the stability of the phase (referred to as the strength that the

system is attracted to the home base by Kuppens et al., 2010), and �d� is a noise term. The

vector field representation of OUM is � � =− �� � − � , which is again, a linear function.

We draw an arbitrary example where� = 0.1
0.2 , � = 0.3

0.4 in Figure B1c.

1 In some special cases there may be infinite number of solutions to f x = 0. For example, ifA = I and c = 0, then every x
satisfies f x = 0. However, this situation is not likely to happen in a VAR(1) model estimated from empirical data.
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The Jacobian of �(�) is a diagonal matrix diag � = �1 0
0 �2

, which is symmetric.

Therefore, it is a gradient model, and its potential function is in a quadratic form:

� � = � � d� =� −
1
2

� − � �diag � � − � + �0. 4

We draw the potential landscape with the noise term drawn from an arbitrary bivariant

normal distribution with Σ = 0.1 0.05
0.05 0.1 . The landscape plot is shown in Figure A1d.

Figure B1. The vector fields and potential landscapes for a two-dimensional VAR(1) model and

an OUM.

B2. Performance of fitlandr under Different Levels of Noise

In the main text, we demonstrated that fitlandr is robust under moderate noise (SD = 1). When

the level of noise is lower (SD = 0.5), the results tend to be closer to the baseline condition

(Figure B2a-c), but when the noise is too high (SD = 2), the bistability cannot be accurately

recovered (Figure B2d-f).
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Figure B2. The vector fields and potential landscapes for the model used in the simulation

study, with lower and higher levels of noise.

B3. Results from the Shortened Data of P2

The length of the data from P2 is much longer than that of P1. To further demonstrate the

robustness of our method, we also present results from shortened data from P2. The data was

shortened in two ways: (1) by using only the 700th to 799th data points, and (2) by using every

10th data point from the first data point to the 991st data point. The results are shown in

Figure B3a-c and Figure B3d-f, respectively. Despite the reduction in data length, the vector

field and the potential landscape generated by fitlandr showed similar features as those based

on the original time series.

Figure B3. The vector fields and potential landscapes estimated from shortened data from P2.
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B4. Vector Fields and Potential Landscapes for Other Participants

In the main text, we showed the results from two participant from two studies as examples.

We also applied the same procedure for four additional participants from the same studies. We

selected two participants from the Leuven BPD study (Houben et al., 2016), one without a BPD

diagnosis (P3) and one with a BPD diagnosis (P4), both with relatively long records. We also

selected two participants from the study by Delignières et al. (2004), referred as P5 and P6. The

resulted vector fields and potential landscapes are shown in Figure B4. Comparing with the

results of P1 and P2, it is clear that each participant has unique dynamics and stability features.

Figure B4. The vector fields and potential landscapes estimated from the data from four

additional participants. Each row presents the results for a different participant, P3-P6.
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Appendix C. SupplementaryMaterials for Chapter 5

C1. Description of the Nine SymptomMeasures (DSM IV)

Table C1.MDD Symptoms

DSM Symptom criteria

(1) Depressedmost of the day, nearly every day

(2) Markedly diminished interest or pleasure in all, or almost all, activities most of the

day, nearly every day

(3) Significant weight loss when not dieting or weight gain (e.g., change of more than

5% of bodyweight in a month), or decrease or increase in appetite nearly every day

(4) Insomnia or hypersomnia nearly every day

(5) Psychomotor agitation or retardation nearly every day

(6) Fatigue or loss of energy nearly every day

(7) Feelings of worthlessness or excessive or inappropriate guilt nearly every day

(8) Diminished ability to think or concentrate, or indecisiveness, nearly every day

(9) Recurrent thoughts of death, recurrent suicidal ideation without a specific plan, or

a suicide attempt or a specific plan for committing suicide

C2. Determining the Cutoff Value for the Binarized CPAS-11 Scale

In order to estimate an Ising network, a crucial step involves binarizing all the responses,

whereby any non-zero response is considered "active." For the original CPAS-11 questionnaire,

the predefined cutoff value is set at 15. To determine the ideal cutoff value for the binarized

data, one that closely aligns with the original data, we employ the algorithm provided by the

OptimalCutpoints package (López-Ratón et al., 2014) with Youden’s index (Youden, 1950),

which maximizes the sum of sensitivity and specificity. The result suggests that the optimal

cutoff value for the binarized scale should be 8. See Figure C1 for the distribution relationship

between the raw scores and the binarized scores.
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Figure C1. The distribution relationship between the raw scores and the binarized scores.

C3. Landscapes for Networks with the Same ConnectivityMatrix

In Figure C2, we show the stability landscapes using the two networks with different

connectivity parameters but using the threshold parameters from the low resilience group in

both models. In this case, the landscapes weremuchmore similar.

Figure C2. The landscapes for (a) the low resilience group, and (b) the network with the

connectivity parameters from the high resilience group and the threshold parameters from the

low resilience group.
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Appendix D. SupplementaryMaterials for Chapter 6

D1. Formal Derivation of the EWS Theory forMultivariate Systems

In this part, we aim to provide a formal derivation of the existence of early warning signals for

general multivariate systems and systematically examine the assumptions involved in the

derivation. The proof for one-dimensional systems and multidimensional systems with

symmetric Jacobian has been given in previous work (Dablander et al., 2023; Scheffer et al.,

2009).

Assume the dynamic system is governed by the following ordinary differential equation:

d�
d�

= � � , 1

and assume there is an equilibrium point �0 that � �0 = �. To simplify notations, we assume

�0 = �. When the system is close enough to the equilibrium point, with local linearization, the

dynamics can be represented by a linear Jacobian matrix:

d�
d�

= ��, 2

where � =

∂�1
∂�1

⋯ ∂�1
∂��

⋮ ⋱ ⋮
∂��
∂�1

⋯ ∂��
∂��

, � is the dimension of the system, �� and �� represents the � -th

component of � and �. Here, the local linearization means that we assume the force that pulls

the system back to (or pushes the system away from) the local minimum is proportional to the

distance it is from the local minimum. Holding the same direction, the further the system is

from the local minimum, the stronger the force to pull it back (or push it away).

The forces that pull the system back (or push it away) depend on the direction in which

the system is away from the local minimum. There are specific directions that characterize the

effect of the force, represented by the eigenvectors of �. Each eigenvector also has an eigenvalue,

representing the strength of the force. The eigenvalue may be complex numbers, but whether

the force tends to pull the system back or push the system away only depends on the real part

of the eigenvalue. Because the equilibrium point is stable, the system should be pulled back

under a small perturbation, no matter in which direction. This means all the eigenvalues of �

should only have negative real parts. The eigenvalue with the largest real part (the eigenvalue

with the smallest absolute value of the real part) is called the dominant eigenvalue (��). So the

equilibrium condition is equivalent to Re �� < 0 . We first show the derivations with the
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assumption that all eigenvalues and eigenvectors of � are real values. The situation with

complex eigenvalues and eigenvectors has similar conclusions and will be discussed later.

When the system is close to the catastrophic bifurcation point �� approaches zero, making the

system gradually unstable in this direction. This instability manifests whenwe add noise in the

system, as represented by the followingmultivariate Ornstein-Uhlenbeck process,

d� � = �� � d� + �d� � . 3

To simplify the derivation, we first do a transformation of the coordinates with

eigenvalue decomposition.

d�' � = ��' � d� + �'d� � , 4

where �' � = �−1� � , � = �−1��, �' = �−1� � . Here� is a square matrix whose columns

are the eigenvectors of � , and � is a diagonal matrix whose diagonal elements are the

eigenvalues of �. The order of the eigenvalues in � is arbitrary. Here, we assume that the first

eigenvalue is the dominant eigenvalue, and it is the only eigenvalue that will approach zero

from the negative side ( �1 → 0− ). Now we investigate the variance and covariance of the

process. It can be proved that Ornstein-Uhlenbeck processes always have a multivariate

normal distribution, and the variance of the Ornstein-Uhlenbeck process above for a

sufficiently long time can be calculated by the following formulas (Meucci, 2009;

Vatiwutipong & Phewchean, 2019),

vec �'∞ = − � ⊕ � −1vec �' , 5

where �' = �'�'� = �−1� �−1 � , vec is the vectorization parameter that transforms a matrix

to a column vector by stacking the columns of the matrix together and⊕ is the Kronecker sum

defined by

�11 ⋯ �1�
⋮ ⋱ ⋮

��1 ⋯ ���

⊕
�11 ⋯ �1�
⋮ ⋱ ⋮

��1 ⋯ ���

=

�11 + �11 ⋯ �1� ⋯ ⋯ �1� ⋯ 0
⋮ ⋱ ⋮ ⋱ ⋱ ⋮ ⋱ ⋮

��1 ⋯ �11 + ��� ⋱ ⋱ 0 ⋯ �1�
⋮ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋮
⋮ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋮

��1 ⋯ 0 ⋱ ⋱ ��� + �11 ⋯ �1�
⋮ ⋱ ⋮ ⋱ ⋱ ⋮ ⋱ ⋮
0 ⋯ ��1 ⋯ ⋯ ��1 ⋯ ��� + ���

.

6

The equations above seem overwhelming. Nevertheless, as � is a diagonal matrix, � ⊕ �

is also a diagonal matrix, and the first element � ⊕ � is the only one approaching zero. This
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means the term − � ⊕ � −1 is a diagonal matrix as well, with only the first element

approaching infinity. If the first element of �' is not zero, only the first element of �'∞, which is

the variance of the first new axis var �'1 , will approach infinity when the system approaches

the bifurcation point.

vec �'
∞ =

var �'1
cov �'1, �'2

⋮

=
−2�1 0 ⋯

0 − �1 − �2 ⋯
⋯ ⋯ ⋯

−1 �'11
�'12

⋮

=

1
−2�1

0 ⋯

0
1

− �1 − �2
⋯

⋯ ⋯ ⋯

�'11
�'12

⋮

→
∞ 0 ⋯

0
1

− �2
⋯

⋯ ⋯ ⋯

�'11
�'12

⋮
.

7

The auto-covariance of�' � can be calculated with the following formulas.

lim
�→∞

cov �' � , �' �+�� = �����'∞. 8

As � is a diagonal matrix, its exponential is a matrix with the exponential of diagonal

elements:

���� = diag ��1��, ��2��, . . . , ����� , 9

in which the first element approaches 1, and other elements are between 0 and 1. Therefore, the

first element of the auto-covariance matrix, which means the auto-covariance of the first new

axis cov �'1 � , �'1 � + �� will approach var �'1 .

Finally, we derive the situation back to the original coordinates. Because �∞ = ��'∞�� ,

the variance and covariance of all the variables with non-zero loading in the first eigenvector

will approach infinity, and their correlations will approach 1.

�∞ =
�1 �1 ⋯
�2 �2 ⋯
⋯ ⋯ ⋯

var �'1 0 ⋯
0 var �'2 ⋯
⋯ ⋯ ⋯

�1 �2 ⋯
�1 �2 ⋯
⋯ ⋯ ⋯

=
�1

2var �'1 2 + �1
2var �'2 2 + ⋯ �1�2var �'1 2 + �1�2var �'2 2 + ⋯ ⋯

�1�2var �'1 2 + �1�2var �'2 2 + ⋯ �2
2var �'1 2 + �2

2var �'2 2 + ⋯ ⋯
⋯ ⋯ ⋯

→
∞ ∞ ⋯
∞ ∞ ⋯
⋯ ⋯ ⋯

10

lim
�→∞

corr �1, �2 =
cov �1, �2

�1�2
=

�1�2var �'1 2 + �1�2var �'2 2 + ⋯

�1
2var �'1 2 + �1

2var �'2 2 + ⋯ + �2
2var �'1 2 + �2

2var �'2 2 + ⋯
→ 1. 11
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The same also holds for auto-correlation.

The eigenvalues and eigenvectors of � may contain complex numbers even if we are

working with a real function. This is because the local dynamic around the equilibrium point

may not only contain shrinking and growing tendencies but also contain rotating. When there

are complex eigenvalues and eigenvectors, they always appear in pairs. The imaginary part of

the eigenvalues and eigenvectors of � represents how the system tends to rotate.

If there are complex eigenvalues, we can do a block diagonalization instead of a plain

diagonalization (Margalit & Rabinoff, 2019). In a block diagonalization, for each conjugated

pair of eigenvalues and eigenvectors, we use the real and the imaginary part of the

eigenvectors Re � Im � as the vectors for coordinates transformation, and we use a 2 × 2

block
Re(λ) Im(λ)

−Im(λ) Re(λ) to represent the rotating and shrinking or growing tendencies

together.

We assume the first pair of complex eigenvalues are the dominant eigenvalues of � , and

only the real parts of them approach zero before the bifurcation point. In this case,

vec �'
∞ =

var �'1
cov �'1, �'2
cov �'1, �'3

⋮
cov �'2, �'1

var �'2
cov �'2, �'3

⋮

=

−2Re �1 −Im �1 0 ⋯ −Im �1 0 0 ⋯
Im �1 −2Re �1 0 ⋯ 0 −Im �1 0 ⋯

0 0 −Re �1 − �3 ⋯ 0 0 −Im �1 ⋯
⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯

Im �1 0 0 ⋯ −2Re �1 −Im �1 0 ⋯
0 Im �1 0 ⋯ −Im �1 −2Re �1 0 ⋯
0 0 Im �1 ⋯ 0 0 −Re �1 − �3 ⋯
⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯

−1 �'11
�'12
�'13

⋮
�'21
�'22
�'23

⋮

.

12

To simplify the calculation of the inverse, we change the order of the matrix and vectors

to make the values that approach infinity all to the upper-left corner of the matrix. The matrix

then becomes a block diagonal matrix that we can obtain the invert of each block separately.
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var �'1
cov �'1, �'2
cov �'2, �'1

var �'2
cov �'1, �'3
cov �'2, �'3

⋮
⋮

=

−2Re �1 −Im �1 −Im �1 0 0 0 ⋯ ⋯
Im �1 −2Re �1 0 −Im �1 0 0 ⋯ ⋯
Im �1 0 −2Re �1 −Im �1 0 0 ⋯ ⋯

0 Im �1 Im �1 −2Re �1 0 0 ⋯ ⋯
0 0 0 0 −Re �1 − �3 −Im �1 ⋯ ⋯
0 0 0 0 Im �1 −Re �1 − �3 ⋯ ⋯
⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯
⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯

−1 �'11
�'12
�'21
�'22
�'13
�'23

⋮
⋮

=

�1 � ⋯
� �2 ⋯
⋯ ⋯ ⋯

�'11
�'12
�'21
�'22
�'13
�'23

⋮

, 13

in which (symbolic calculation performed withMathematica, Wolfram Research, Inc., 2022)

�1

=

−8Re �1
3 − 4Re �1 Im �1

2

16Re �1
4 + 16Re �1

2Im �1
2

4Re �1
2Im �1

16Re �1
4 + 16Re �1

2Im �1
2

4Re �1
2Im �1

16Re �1
4 + 16Re �1

2Im �1
2 −

4Re �1 Im �1
2

16Re �1
4 + 16Re �1

2Im �1
2

−
4Re �1

2Im �1

16Re �1
4 + 16Re �1

2Im �1
2

−8Re �1
3 − 4Re �1 Im �1

2

16Re �1
4 + 16Re �1

2Im �1
2

4Re �1 Im �1
2

16Re �1
4 + 16Re �1

2Im �1
2

4Re �1
2Im �1

16Re �1
4 + 16Re �1

2Im �1
2

−
4Re �1

2Im �1

16Re �1
4 + 16Re �1

2Im �1
2

4Re �1 Im �1
2

16Re �1
4 + 16Re �1

2Im �1
2

−8Re �1
3 − 4Re �1 Im �1

2

16Re �1
4 + 16Re �1

2Im �1
2

4Re �1
2Im �1

16Re �1
4 + 16Re �1

2Im �1
2

−
4Re �1 Im �1

2

16Re �1
4 + 16Re �1

2Im �1
2 −

4Re �1
2Im �1

16Re �1
4 + 16Re �1

2Im �1
2 −

4Re �1
2Im �1

16Re �1
4 + 16Re �1

2Im �1
2

−8Re �1
3 − 4Re �1 Im �1

2

16Re �1
4 + 16Re �1

2Im �1
2

→

−
1

4Re �1

1
4Im �1

1
4Im �1

−
1

4Re �1

−
1

4Im �1
−

1
4Re �1

1
4Re �1

1
4Im �1

−
1

4Im �1

1
4Re �1

−
1

4Re �1

1
4Im �1

−
1

4Re �1
−

1
4Im �1

−
1

4Im �1
−

1
4Re �1

�2

=

−Re �1 − �3

Re �1
2 + 2Re �1 �3 + Im �1

2 + �3
2

Im �1

Re �1
2 + 2Re �1 �3 + Im �1

2 + �3
2

−
Im �1

Re �1
2 + 2Re �1 �3 + Im �1

2 + �3
2

−Re �1 − �3

Re �1
2 + 2Re �1 �3 + Im �1

2 + �3
2

→
−

1
�3

0

0 −
1
�3

.

14

Because �'12 = �'21 , cov �'1, �'2 = cov �'2, �'1 = 0. As long as �'11 and �'22 are not

both zero, var �'1 and var �'2 will both approach infinity. Because �3 does not approach

zero, both cov �'1, �'3 and cov �'2, �'3 will remain finite.

Following the same procedure as used for the real-valued case, it can be proved that the

variance of any variables that have non-zero loading in either the real part or the imaginary

part of the first eigenvector will approach infinity. Their correlation and auto-correlation will

approach 1 as long as the two variables of consideration both belong to either the real part or

the imaginary part of the first eigenvector.
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To summarize, with the aforementioned assumptions, we can derive the fact that the

variables involved in this critical direction should have the variance, (auto)covariance, and

(auto)correlations increasing before the transition.

Examples with the Bivariate CuspModel

Since the derivation above may be difficult to understand, here we provide an example with

the bivariate cusp model (Figure 1A in the main text; also described in Supplementary

Materials B). Note that this is a special case of the general derivation above.

The model is specified as follows:

� =
2

2
� +

2
2

�,

� =
2

2
� −

2
2

�,

� =
1
4

�4 −
3
2

�2 + �� + �2

=
1

16
� + � 4 −

3
4

� + � 2 +
2�
2

� + � +
1
2

� − � 2.

15

The partial derivatives of�with respect to � and � are as follows:

∂�
∂�

=
1
4

� + � 3 −
3
2

� + � +
2�
2

+ � − � ,

∂�
∂�

=
1
4

� + � 3 −
3
2

� + � +
2�
2

− � − � .
16

The force on the system is the gradient of �, namely � =
− ∂�

∂�

− ∂�
∂�

. Therefore, the Jacobian

of the system is the following:
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� =

∂��

∂�
∂��

∂�
∂��

∂�
∂��

∂�

=
−

3
4

� + � 2 +
1
2

−
3
4

� + � 2 +
5
2

−
3
4

� + � 2 +
5
2

−
3
4

� + � 2 +
1
2

=
−

1
2

1
2

1
2

1
2

−2 0

0 −
3
2

�2 + 2�� + �2 − 2

−
1
2

1
2

1
2

1
2

17

At the equilibrium points, both partial derivatives should be zero. Comparing the two

equations above, it is obvious that � − � = 0 , � = � . Therefore, at the equilibrium point, we

have the following condition:

∂�
∂�

=
∂�
∂�

= 2�3 − 3� +
2�
2

= 0 18

The closed-form solution for this cubic equation with a parameter has a complex form.

Interested readers may use numerical software (e.g., Mathematica, Wolfram Research, Inc.,

2022) to observe how the solution differs with different � values. Here, we only provide the

conclusion about the asymptotic behavior close to the bifurcation point. As � → 2− , the stable

equilibrium point at the negative half approaches − 2
2

, − 2
2

and the Jacobian approaches

−1 1
1 −1 . The two eigenvalues of the Jacobian then approach 0 and -2 (which can also be

seen from the decomposition in Equation 17).

Following Equation 5, the variance-covariance matrix of the system under noise is given

by the following (note that, as we have the Jacobian, we calculate the variance-covariance

matrix in the original coordinates):

vec �∞ = − � ⊕ � −1vec �

→

2 −1 −1 0
−1 2 0 −1
−1 0 2 −1
0 −1 −1 2

−1

vec � ,
19

in which the first matrix is singular. To know what exact elements of the matrix are

approaching infinity, we do a calculation when � is a little smaller than 2, that the equilibrium



256

is a little to the negative side of − 2
2

, − 2
2

. Assume the Jacobian is now −1.01 1.01
1.01 −1.01 ,

we have (numerical calculation was conducted by Mathematica, Wolfram Research, Inc.,

2022):

vec �∞ = − � ⊕ � −1vec �

=

2.02 −1.01 −1.01 0
−1.01 2.02 0 −1.01
−1.01 0 2.02 −1.01

0 −1.01 −1.01 2.02

−1

vec �

=
6.68851 × 1015 6.68851 × 1015 6.68851 × 1015 6.68851 × 1015

6.68851 × 1015 6.68851 × 1015 6.68851 × 1015 6.68851 × 1015

6.68851 × 1015 6.68851 × 1015 6.68851 × 1015 6.68851 × 1015

6.68851 × 1015 6.68851 × 1015 6.68851 × 1015 6.68851 × 1015

vec �

20

Therefore, as long as there is some noise in the system (i.e., � ≠ � ), the variance and

covariance of � and �will approach infinity.

We also do the same calculation for the second model in the main text (Figure 1B in the

main text, also described in Supplementary Materials B). This time the model is specified as:

� =
1
4

�4 −
3
2

�2 + �� + �2. 21

We then have:

∂�
∂�

= �3 − 3� + �,

∂�
∂�

= 2�.
22

� =

∂��

∂�
∂��

∂�
∂��

∂�
∂��

∂�

= −3�2 + 3 0
0 −2

23

When � → 2 , the equilibrium point at the negative half approaches −1,0 , and the

Jacobian approaches 0 0
0 −2 . Again, we consider the case when � is a little smaller than 2,

and � = −0.01 0
0 −2 . Similarly, we have (numerical calculation was conducted by

Mathematica, Wolfram Research, Inc., 2022):



Appendix D

257

vec �∞ = − � ⊕ � −1vec �

=

0.02 0 0 0
0 2.01 0 0
0 0 2.01 0
0 0 0 4

−1

vec �

=

50 0 0 0
0 0.497512 0 0
0 0 0.497512 0
0 0 0 0.25

vec � .

24

Here, as long as there is some noise for � (i.e., ��� ≠ 0), the variance of � and � only will

approach infinity. Other elements of the variance-covariancematrix will remain small.

D2. Landscape Illustrations and Simulations

Multivariate Landscapes and Simulations

In this section, we explain the details of the results shown in Figure 1-3 in the main text. To

illustrate different scenarios for landscape changes, we created a set of landscape functions, all

of which are based on the general bistable landscape function used by Shi et al. (2016), � =
1
4

�4 − 3
2
�2 + �� . We performed coordinate transformations or added additional components

to transform the landscape into certain geometric shapes. Specifications of those landscapes

are listed as follows.

System (a) is a coordinate transformation of System (b) (see below) to make both x- and

y-axes involved in the transition:

� =
2

2
� +

2
2

�, (1)

� =
2

2
� −

2
2

�, (2)

� =
1
4

�4 −
3
2

�2 + �� + �2. (3)

System (b) is a multivariate extension of the original one-dimensional landscape function.

It adds the y-axis, which takes a quadratic form and does not introduce additional basins:

� =
1
4

�4 −
3
2

�2 + �� + �2. (4)

System (c) added a term, −2ReLU � � , to System (b) to show an example in which the

starting direction of the transition does not directly point to the endpoint of the transition:



258

� =
1
4

�4 −
3
2

�2 + �� + �2 − 2ReLU � �, in which ReLU � = max �, 0 . (5)

System (d) is a coordinate transformation of System (b) to make the transition along a

curve instead of a straight line:

� = arctan
�
�

, (6)

� =
4�
�

+ 0.5, (7)

� = 3 �2 + �2 − 3 , (8)

� =
1
4

�4 −
3
2

�2 + �� + �2. (9)

System (e) is a coordinate transformation of System (b) to make the new attractor a circle

instead of a point:

� = 3 �2 + �2 − 1, (10)

� =
1
4

�4 −
3
2

�2 + ��. (11)

We then draw all the landscape functions in Figure 1. All the examples shown in Figure 1

of themain text are cusp bifurcations.

Taking the gradients from the landscape functions, and adding the stochastic term, we

can have the stochastic dynamic equations of the system,

d� =−
��
��

d� + ��d��, (12)

d� =−
��
��

d� + ��d��, (13)

which can be used to simulate the system with the Euler–Maruyama method. In our

simulations, we let the control parameter � change according to the formula � = (3 − �)/100,

and we used a timestep of 0.01, a simulation length of 700 time units, and a noise level of � =

0.3.

EWS Simulation Shown in theMain Text

In this section, we explain the details of the results shown in Figure 4 in the main text.
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Again, we use the simple gradient system with noise by Shi et al. (2016) as the model for

our simulation. The model contains one state variable, � , and a control parameter, � . The

potential function of the system, �, is specified as follows. Note that this function only differs

in a constant coefficient compared with the function introduced in the previous section. This is

to make the change rate in the simulations more realistic.

� �, � = 100
1
4

�4 −
3
2

�2 + �� . 14

The dynamic functions of the system are then specified as

d�
d�

= −
�� �, �

��
+ 2σ� � , 15

where d�/d� represents the change rate of � , ��(�, �)/�� represents the gradient of the

potential function with respect to �, � represents the strength of the noise and was set as 10 in

this study (as in Shi et al., 2016), and �(�) represents standard white noise. The potential

landscapes of the system with different � , as well as the equilibrium points of the system

where ��(�, �)/�� = 0 , are shown in Figure D1. For simulating the change of the landscape,

the initial value of � is set as -3, and the changing rate of � is set as d�/d� = 1 . When the

simulation starts, there is only one basin for the system. We refer to this as the positive phase

because it is in the positive semi-axis of �. As � increases to -2, the second basin appears, and

its stability increases as � further increases. We refer to this basin as the negative phase. When �

increases to 2, the system reaches its bifurcation point. The positive phase of the system

disappears and the negative basin becomes the only possible basin. All simulations were

numerically performed using the Euler-Maruyama method, with 10−4 as the step size and 6 as

the total time length. The raw simulation data were subsampled by a factor of 10 to reduce the

length of the data. Therefore, the time interval between adjunct time points in the output is

10−3.

Here we also show two early warning indicators that are commonly used in previous

empirical studies: increasing variance and increasing autocorrelation function (ACF). All the

two parameters were estimated with the overlapping moving window approach. The window

size was selected as 200 time points (Δ� = 0.2), and each time the windowmoved forward for

20 time points (Δ� = 0.02 ). Here the number of time points in each window is much more

than the typical value in empirical studies. We chose this large value because the main purpose

of this simulation is to qualitatively show the phenomenon of EWSs, not to provide guidance

on the window size for empirical studies. A rather large window size can ensure the stability of
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the results. Within each window, the variance and lag-1 ACF were calculated. Specifically, the

data were linear-detrended within each window before calculating the autocorrelation

coefficient. The right-aligned windows were used, which means that, for example, the variance

calculated within the window from � = 0 to � = 0.2 is regarded as the variance at � = 0.2 .

Thus, no future information is included in the moving windows statistics.

Figure D1. Illustration of a cusp bifurcation specified by Equations 1. The gray areas represent

the potential landscapes for different � values. The red dots represent the stable equilibrium

points and the blue points represent the unstable equilibrium points. The white circles

represent how the system experiences a sudden change during a cusp bifurcation. At the

bifurcation point (� = 2), the state of the system became unstable, so it transitions to another

state.

Additional Simulation Results

In this section, we provide some additional simulation results related to, but not reported in

the main text.

Consequences of Calculating EWSs not Strictly Before the Transition. If the EWS

calculation window includes the transition itself, the increase in variance and autocorrelation
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may be falsely taken as evidence of EWSs. To illustrate this point, we conducted simulations

for another condition, in which the transition is purely driven by a large fluctuation so that

there are no EWSs before the transition. This condition is set up the same as described in the

EWS simulation shown in the main text, except that the parameter � is held constant at 0, which

means that the potential function� does not change through the simulation and that there is a

strong noise Δ� = − 3 at � = 3 that pushes the system to the negative phase. We use the time

that the system first crosses the barrier as the time of the transition ( �trans ), and we use

Kendall’s � calculated with the Kendall package (McLeod, 2011) to evaluate the trends of

variance and autocorrelation. We investigated three types of ranges in the current research: (1)

strictly before the transition, for which � was calculated in the range from �trans − 1.5 to �trans;

(2) roughly before the transition, for which � was calculated in the range from �trans − 1.5 to

�trans + 0.5; and (3) around the transition, for which �was calculated in the range from �trans −

1.5 to �trans + 1.5. These conditions were set to mimic different empirical studies where EWSs

are calculated strictly before the transition (when the transition indicator is calculated in at

least the same frequency as EWSs), roughly before the transition (when the transition

indicator is calculated through the whole period but in a lower frequency as EWSs), and in a

large range that may contain a transition (when the transition indicator is only calculated

before or after the whole study period). The range sizes are set as roughly one order of

magnitude larger than the window sizes for moving window statistics, which is often the case

in empirical studies. For each condition, the simulation was replicated 103 times and the

results and statistical indicators were recorded. Examples of the simulated time series are

shown in Figure D2, and the distributions of � in repeated simulations are shown in Figure D3.

From the simulation results, it is clear that if the EWS calculation window is not strictly before

the transition, the statistical effect of the transition itself may be falsely taken as evidence of

EWSs, and true EWSs may not be detected because the decrease in variance and ACF may

average out the true EWSs.
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Figure D2. Simulation examples for sudden changes caused by (a) the bifurcation of the system,

and (2) a large fluctuation

Figure D3. Trends of variance and ACF represented with the distribution of Kendall’s � from 103

simulations, for two simulation conditions and different periods.

Consequences of Using Inconsistent Variables for Calculating EWSs and Detecting

Sudden Changes. In the main text, we explained why, from theoretical considerations,

researchers should use a consistent set of variables to calculate EWSs and detect sudden

changes. Here, we use a simplified simulation example to illustrate the possible consequences

of using different variables in empirical studies, with some variables only used for calculating
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EWSs and some only used for detecting sudden changes. The model we used here is very

similar to the one used in the section Consequences of calculating EWSs not strictly before the

transition, but there are two sets of equations for two variables �1 and�2:

�1 �1, �1 = 100
1
4

�1
4 −

3
2

�1
2 + �1�1 , 16

d�1

d�
= −

��1 �1, �1

��1
+ 2σ1�1 � , 17

�2 �2, �2 = 100
1
4

�2
4 −

3
2

�2
2 + �2�2 , 18

d�2

d�
= −

��2 �2, �2

��2
+ 2σ2�2 � . 19

We set �1 = 400 and �2 = 10 so that �1 is influenced by strong noise and does not show

a single, clear transition, and �2 has a transition when �2 approaches 2 (as in Shi et al., 2016).

We further include a weak relationship between �1 and �2 by associating �1 and �2 . The

relationship of �1 and �2 can, in principle, take any form. We illustrate two simple conditions:

(a) �2 = �1, (b) �2 = �1 + 2. The starting value and changing rate of �1 were set the same as in

section Consequences of calculating EWSs not strictly before the transition: the initial value of �1 is -

3 and d�1/d� = 1 . The simulation methods (e.g., simulation length, step size, etc.) are the

same as in the section Consequences of calculating EWSs not strictly before the transition. Again, we

show simulation examples in Figure D4, and the distribution of Kendall’s � in repeated

simulations in Figure D5. From the simulation results, we can see that if EWSs and sudden

changes are detected from different variables, the trend of variance or ACF may not be related

to the sudden change.
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Figure D4. Simulation examples for two conditions.

Figure D5. Trends of variance and ACF represented with the distribution of Kendall’s � from 103

simulations, for two conditions and different periods.

Code Availability

All the code necessary to replicate the results shown in this file can be found in the OSF

repository of this project https://osf.io/f659u/.
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Appendix E. SupplementaryMaterials for Chapter 7

E1. Simulation Specifications

In the main text, we presented various simulations to illustrate different types of transitions.

We used stochastic differential equations (SDEs) to specify the models and conducted those

simulations with the sde package (Iacus, 2022) for univariate cases and the yuima package

(Brouste et al., 2014) for multivariate cases. The R code to replicate all the simulations is

available at https://osf.io/4jaqk/.

Examples of Various Types of Transitions

We run each situation from T = 0 to T = 100, with a time step of 0.01, except for the R-tipping

case for which we run the simulation from T = 0 to T = 10.

The landscape function of the B-tipping (fold bifurcation) example shown in the main

text is specified as follows (adapted from Shi et al., 2016),

� = 0.5
1
4

�4 −
3
2

�2 + �� , (1)

where � is the control parameter that slowly changes following

� = 3 − 0.06�. (2)

The dynamics of the variable � is specified with the following SDE,

d� =−
��
��

d� + �d�, (3)

where � represents the strength of noise and takes 0.3 in this example.

For Hopf bifurcation, an additional variable is required to make the vibration behavior

possible. Hence, we use the following SDEs,

d� = � + �2 + �2 − �2 + �2 2 � − � + � �2 + �2 � d� + �d�1, (4)

d� = � + �2 + �2 − �2 + �2 2 � + � + � �2 + �2 � d� + �d�2, (5)

for which the drift function is transformed from the polar coordinates’ representation,

� =
1
6

�6 −
1
4

�4 +
1
2

��2 , (6)
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d�
d�

=−
∂�
∂�

, (7)

d�
d�

= � + ��2. (8)

We use the parameter setting � = 0.5, � = 0.1, � = 0.1 in our simulation. Additionally, for

the reversed direction, we use � =− 3 + 0.06�.

For the N-tipping example, we use the same potential function form as the B-tipping

example but hold � = 0, and we use a stronger noise of � = 0.65.

For the R-tipping example, we use the following potential function,

� = 0.5
1
4

� − � 4 −
3
2

� − � 2 , (9)

and we set � =− 5 + 1.1�.

For the N-diffusion example, we use the same potential function form as the B-tipping

example but hold � = 0, and we use a stronger noise of � = 2.

The key parameters of those examples are summarized in Table E1

Table E1. Simulation settings in the examples. The parameters corresponding to the main

cause of the transitions are marked bold.

Type of transition
Stability change

(shape)

Stability

change

(position)

Variable change
Noise

strength

B-tipping 0.06 0.00 0.50 0.30

N-tipping 0.00 0.00 0.50 0.65

R-tipping 0.00 1.20 0.50 0.30

N-diffusion 0.00 0.00 0.50 2.00

Examples of Clinical Scenarios

For the first scenario, we use the following potential function,

� = 0.5
1
4

�4 −
3
2

�2 + �� + 0.1
1
4

�4 −
1
2

�2 − �� , (10)

the following for the control parameter,
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� = 1 − 0.06�, (11)

and the noise strength is set as �� = 0.3, �� = 0.5.

For the second scenario, we use the same setting as the N-tipping example for � , the

following potential function for �,

� = ln 1 + 1.5x − λ 2 + ln 1 + �2 − 0.18�. (12)

For �, we use the same setting as the R-tipping example.

E2. Illustrations of Other Types of Bifurcations

Figure E1. A simulated time series and ball-and-landscape illustrations for Hopf bifurcation.

Figure E2. A simulated time series and ball-and-landscape illustrations for Hopf bifurcation

(reversed direction).
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Appendix F. SupplementaryMaterials for Chapter 8

F1. The Influence of Noise and Transitions on quadVARModel Estimation

For linear models, the influence of noise on model estimates is rather straightforward, in that

larger noise reduces the signal-to-noise ratio, thus making the parameter estimations less

accurate (e.g., Mansueto et al., 2022). However, for nonlinear models, the relationship between

noise and model estimation is more complicated. We show an example to illustrate this idea,

in which we reduce the noise level from SD = 1 to SD = 0.2. The results are shown in Figure F1.

The networks estimated from this example are similar to the linearized networks for the

negative state shown in Figure 3. However, no nonlinear effects were estimated in this case,

making the networks for different states the same as each other. This is because the noise in

the system is too weak, making the system always stay in the negative phase. The simulated

data do not contain enough information about the system in the alternative phase, making it

difficult to estimate the nonlinear effects.
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Figure F1. Linearized networks for the simulation examples with different lengths, with noise

SD = 0.2. In each row, the first plot shows the raw time series of �1 , the second to the fourth

plots show the linearized networks estimated from simulation data for the neutral state (�1 =

�2 = �3 = �4 = 2.80), the positive state (�1 = �2 = 4.89, �3 = �4 = 1.36), and the negative

state (�1 = �2 = 1.36, �3 = �4 = 4.89).
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F2. The Comparable Linear System

The comparable linear system is specified using parameters of a VARmodel estimated from the

simulated data from the nonlinear, bistable system. The simulated dataset contains 1000 data

points. The coefficients for the VAR model are as follows. The precise value without rounding

can also be reproduced with the code online.

��+1 = ��� + � (1)

� =

0.44 0.08 −0.18 −0.26
0.14 0.41 −0.18 −0.23

−0.17 −0.25 0.46 0.08
−0.2 −0.18 0.13 0.44

(2)

� =

2.76
2.61
2.68
2.46

(3)

F3. Definitions of ClassificationMetrics

For the classification metrics, we do not only consider whether a value is zero but also consider

whether the sign of the value is correct according to the true value. Therefore, we are

interested in the correctness of the directed inferences of the coefficients. Specifically, we

define the following:

(1) True positive, when the true coefficient is nonzero, and the estimated coefficient is also

nonzero and has the same sign as the true coefficient.

(2) True negative, when the true coefficient is zero, and the estimated coefficient is also

zero.

(3) False positive, when the estimated coefficient is nonzero, but the true coefficient is

zero or is nonzero but has the opposite sign as the estimated coefficient.

(4) False negative, when the estimated coefficient is zero, but the true coefficient is

nonzero.

Based on the definitions above, we calculate the followingmetrics:

(1) Accuracy = (true positive + true negative)/(true positive + true negative + false positive

+ false negative).

(2) Precision = true positive/(true positive + false positive).

(3) Sensitivity = true negative/(true negative + false positive).

(4) Specificity = true positive/(true positive + false negative).
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The correlation is defined as the Pearson correlation between the estimated coefficients

and the true coefficients.

F4. Results from the Second Empirical Dataset

The results from the dataset from Kuppens et al. (2010) were similar to the results of the

dataset Rowland andWenzel (2020; reported in the main text). The EBIC and cross-validation

results for the dataset from Kuppens et al. (2010) are shown in Figure F2.

Figure F2. EBIC and cross-validation MSE for participants in Kuppens et al. (2010). Gray lines

represent individual participants.
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F5. quadVARModel Estimations for Selected Participants

Table F1. quadVARmodel estimations for the 6th participant in Rowland andWenzel (2020).

Model Effect Estimate

happy satisfied 0.3551

excited satisfied 0.4287

relaxed relaxed 0.4105

satisfied satisfied 0.5321

angry excited -0.0783

angry satisfied 0.0322

angry angry -0.1278

angry excited:angry 0.0231

anxious sad -0.3702

anxious sad:sad 0.0375

depressed satisfied -0.1500

depressed angry -1.4642

depressed depressed 0.2909

depressed satisfied:angry 0.0391

Table F2. quadVARmodel estimations for the 8th participant in Rowland andWenzel (2020).

Model Effect Estimate

happy satisfied -0.1669

happy satisfied:satisfied 0.0056

satisfied satisfied 0.2585

angry sad 0.3214

anxious angry 0.2355

anxious anxious 0.2537

depressed depressed 0.4029

sad depressed 0.2574

sad sad 0.4248
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Appendix G. SupplementaryMaterials for Chapter 9

G1. AlternativeModels

In the main text, we argued that as long as several key dynamic features are preserved, we can

alter the function form of the dynamic models and obtain similar features in the dynamic

system. Here, we show two examples as alternatives to the original models analyzed in the

main text.

The first example is an alternative version of the panic disorder model, in which we use

two S-shaped curves for the dynamic equations of A and PT. We chose a different form of the S-

shaped curves compared to the original model to ensure that there is always a stable

equilibrium point at � = �� = 0 . The model is specified as follows (the changed parts are

marked with gray shading),

d�
��

= ��
����

���� + (��exp ��� ��)
, (1)

d��
d�

= ���
����

���� + 1
− �� , (2)

d�
d�

= ��
1

1 + exp − �� � − ℎ�,�

− 0.5� . (3)

The default parameter set is summarized in Table G1.

Table G1. The default parameter values for the alternative version of the panic disorder model.

Parameter Value

�� 1

�� 6

�� 0.02

�� 5

��� 1

��� 4

�� 0.05

�� 20

ℎ�,� 0.4
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The simulated output of this model is shown in Figure G1, and the phase plane analyses

and bifurcation analysis results are shown in Figure G2. As shown in those results, although we

used double S-curved functions for A and PT, because the critical dynamic features remain

similar, themodel still produces reasonable outcomes for the phenomenon of panic disorder.

Figure G1. Simulated output of the alternative version of the panic disorder model.
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Figure G2. Phase plane analysis and bifurcation analysis results for the alternative model of

panic disorder. (a)-(c) Phase plane analyses results withH as a parameter, (a) H = 0; (b)H = 0.5;

(c)H = 0.8. (d) The one-parameter bifurcation analysis result withH as the parameter. (e) The

phase plane analysis result withH as a variable.

The second example is an alternative version of the suicidal ideation model, in which we

changed the form of the dynamic equation for A, making the first term of the right-hand-side

from quadratic to linear. The modified model is specified as follows (the changed parts are

marked with gray shading),
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d�
d�

= −�2 � − � + �2� − �2�, (4)

d�
d�

= −�3� + �3�,
(5)

d�
d�

=− �4� +
1

1 + exp − �41 � − �42
.

(6)

We used the same parameters as the original model, only except that we use �2 = 2

instead of �2 = 1.5 to accommodate the change of the function’s form. The simulated output

of this model is shown in Figure G3, and the phase plane analyses and bifurcation analyses

results are shown in Figure G4. Again, although the function form of A changed from quadratic

to linear, because the critical dynamic features remain similar, the model still produces

reasonable outcomes for the phenomenon of suicidal ideations.

Figure G3. Simulated output of the alternative version of the suicidal ideationmodel.
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Figure G4. Phase plane analyses and bifurcation analysis results for the alternative model of

panic disorder. (a)-(c) Phase plane analyses results for different S values (a) S = 0; (b) S = 0.5; (c)

S = 0.8. (d) The one-parameter bifurcation analysis result with S as the parameter.
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Dutch Summary (Nederlandse Samenvatting)

Psychologische processen resulteren uit een groot aantal biologische, psychologische en

sociale factoren die op complexe wijze in de tijd op elkaar inwerken. Om demenselijke geest en

psychische stoornissen beter te kunnen bestuderen, is het van essentieel belang om deze

complexiteit te erkennen en te begrijpen. In de afgelopen jaren zijn steeds meer onderzoekers

begonnen met het toepassen van het perspectief van complexe dynamische systemen. Hoewel

veel concepten uit de complexiteitstheorie hun weg hebben gevonden naar de

gedragswetenschappen, is verdere technische ontwikkeling nodig om conceptuele ideeën

beter te kunnen verbinden met kwantitatieve toepassingen. In dit proefschrift ontwikkel ik

formele analysetools om complexiteit in de gedragswetenschappen beter te begrijpen. Mijn

werk richt zich specifiek op drie belangrijke onderwerpen: het kwantificeren van de stabiliteit

van een psychologisch systeem met behulp van potentieellandschappen, het bestuderen van

abrupte veranderingen en hun voorspellers in psychologische systemen, en het beschrijven van

de niet-lineaire dynamiek van psychologische systemen.

Deel 1. Methoden voor stabiliteitslandschappen

Complexe interacties in een dynamisch systeem kunnen leiden tot verschillende fasen met

uiteenlopende kenmerken (bijvoorbeeld een depressieve fase en een gezonde fase). Vaak blijft

het systeem in de buurt van één zo'n fase, maar onder bepaalde voorwaarden kan het overgaan

naar een andere. In theoretische artikelen wordt dit vaak verbeeld met de bal-in-landschap-

metafoor (zie Figuur 1 in Hoofdstuk 2), waarbij de bal de toestand van het systeem

representeert en het landschap de stabiliteit van die toestanden. Kwantitatieve methoden om

stabiliteitslandschappen van psychologische systemen daadwerkelijk te berekenen ontbraken

echter nog.

In Hoofdstuk 2 beschrijf ik een nieuwe methode om stabiliteitslandschappen van formele

modellen te verkrijgen. Ik laat me daarbij inspireren door biologische modellen en maak

gebruik van de stationaire verdeling van modelsystemen. Als voorbeeld pas ik de methode toe

op een formeel model van paniekstoornis. Dit model heeft twee fasen: een gezonde fase en een

paniekfase. Hoe stabieler de paniekfase, hoe ernstiger de paniekstoornis. Ik laat zien hoe onze

methode gebruikt kan worden om de stabiliteit van verschillende psychologische fasen te

illustreren, de invloed vanmodelparameters te analyseren enmodellen te verbeteren.

In Hoofdstuk 3 geef ik verdere technische details van de methode uit Hoofdstuk 2 en

introduceer ik het R-pakket simlandr, waarin deze methode geïmplementeerd is. De analyse

bestaat uit drie stappen: (1) het model simuleren tot het is geconvergeerd, (2) de stationaire
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verdeling schatten met een kernel-benadering en deze omzetten naar een potentieelfunctie, en

(3) de minimum energy path (een ‘weg van de minste weerstand’ in het landschap) berekenen

om de barrièrehoogte tussen fasen te verkrijgen. Deze hoogte geeft aan hoe moeilijk het is voor

het systeem om overgangen te maken. Ik illustreer de methoden van het pakket met een

biochemisch en een psychologischmodelsysteem.

In Hoofdstuk 4 beschrijf ik een methode om stabiliteitslandschappen te berekenen op

basis van empirische data, zoals data verkregen via herhaalde zelfrapportages van deelnemers.

De methode werkt als volgt. Eerst schatten we een vectorveld dat de veranderingstendens van

het systeem op verschillende punten weergeeft. Hiervoor gebruiken we een niet-lineaire

schattingsmethode om complexe dynamische patronen goed te kunnen vastleggen.

Vervolgens gebruiken we de methode uit Hoofdstukken 2 en 3 om een potentieellandschap op

te bouwen op basis van het vectorveld. Ik illustreer deze aanpak met gesimuleerde en

empirische datasets.

In Hoofdstuk 5 beschrijf ik een methode om stabiliteitslandschappen af te leiden uit Ising-

netwerken, een type netwerkmodel dat gebaseerd is op binaire symptoomdata. Het aantal

actieve symptomen (de knopen in het netwerk) wordt in dit netwerkmodel gezien als een maat

voor de ernst van de stoornis. Ik maak gebruik van een intrinsieke energiemaat van Ising-

netwerken, de Hamiltoniaan, en vat deze samen om een stabiliteitslandschap op te stellen in

relatie tot het aantal actieve knopen. Daarnaast introduceer ik stabiliteitsmaten om de

stabiliteit van zowel de gezonde als de pathologische fase te kwantificeren. Ik laat zien hoe

netwerkconnectiviteit en knoopdrempels (thresholds) de stabiliteit beïnvloeden, en hoe

groepen hiermee vergeleken kunnenworden.

Deel 2. Vroegewaarschuwingssignalen en transities

In klinische trajecten worden vaak abrupte veranderingen waargenomen, zowel verbeteringen

als verslechteringen. Eerdere onderzoekers hebben dergelijke abrupte veranderingen

geïnterpreteerd als kritieke transities in niet-lineaire dynamische systemen. Vanuit eerder

onderzoek is gehypothetiseerd dat de stijging van een aantal statistische indicatoren, zoals

variantie en autocorrelatie, kan dienen als een vroeg waarschuwingssignaal voor een transitie.

De empirische resultaten zijn echter wisselend. In dit deel verdiep ik mij in de theorie van

kritieke transities en onderzoek ik hoe deze theorie kan bijdragen aan het begrijpen van

abrupte veranderingen in de klinische psychologie.

In Hoofdstuk 6 bespreek ik de wiskundige theorie achter vroege waarschuwingssignalen

en identificeer ik drie belangrijke aannames voor het detecteren ervan: (1) het systeem moet
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vertrekken vanuit een puntattractor, (2) de waarschuwingssignalen moeten verschijnen vóór

de transitie, en (3) waarschuwingssignalen en transities moeten zich voordoen in dezelfde

variabelen. Op basis van deze aannames evalueer ik gangbare onderzoeksmethoden en

identificeer ik een aantal inconsistenties met de theorie, wat kan verklaren waarom empirische

resultaten tegenstrijdig zijn. Ik geef ook theorie gestuurde aanbevelingen voor toekomstig

onderzoek.

In Hoofdstuk 7 neem ik een breder perspectief om de verschillende typen transities in

dynamische systemen te onderzoeken en bespreek ik hoe deze getypeerd kunnen worden in

een klinische context. Hoewel er veel factoren zijn die tot een transitie kunnen leiden, zijn er op

abstract niveau een beperkt aantal mechanismen met unieke kenmerken te onderscheiden. Ik

introduceer vier soorten veranderingen uit de dynamische systeemtheorie: bifurcatie-

geïnduceerde kantelingen (B-tipping), ruis-geïnduceerde kantelingen (N-tipping), snelheid-

geïnduceerde kantelingen (R-tipping), en ruis-geïnduceerde diffusie (N-diffusion). Aan de

hand van twee klinische scenario’s laat ik zien waarom het belangrijk is om het niveau van het

systeem in de onderzoeksvraag te specificeren om het type verandering te kunnen bepalen. Ik

sluit af met praktische suggesties voor empirisch onderzoek.

Deel 3. Niet-lineaire dynamiek

Psychologische variabelen beïnvloeden elkaar vaak op niet-lineaire wijze, wat aanleiding geeft

tot vele interessante fenomenen die in eerdere delen van dit proefschrift besproken zijn. Het

modelleren en begrijpen van deze niet-lineaire interacties is echter moeilijker dan in het

lineaire geval, en vereist geavanceerdere methoden en technische zorgvuldigheid. In dit deel

behandel ik dit probleem vanuit twee invalshoeken: niet-lineaire schatting op basis van

empirische data en analysemethoden voor computationele modellen.

In Hoofdstuk 8 introduceer ik een nieuw niet-lineair model voor individuele tijdreeksdata:

het kwadratische vectorautoregressieve model. Dit model breidt het lineaire model uit door

ook kwadratische termen toe te voegen aan de regressie. Een specifieke regularisatiemethode

wordt toegepast om overfitting te voorkomen, en een linearisatiemethode wordt ingezet om de

interpretatie van resultaten te vergemakkelijken. Aan de hand van simulaties en empirische

datasets laat ik zien dat het model, ondanks een matige algemene prestatie, in staat is

belangrijke niet-lineaire verbanden op te sporen. Het model is daarom geschikt voor

exploratief onderzoek.

In Hoofdstuk 9 richt ik mij op formele dynamische modellen en bespreek ik twee grafische

analysetechnieken: fasevlakanalyse en bifurcatieanalyse. Met fasevlakanalyse kunnen stabiele
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toestanden en veranderingsdynamiek in kaart worden gebracht; met bifurcatieanalyse kunnen

we systematisch de invloed van modelparameters onderzoeken. Aan de hand van een

paniekstoornismodel en een model van suïcidale gedachten laat ik zien hoe deze methoden

gebruikt kunnen worden om stabiliteit en invloedrijke factoren te analyseren in

psychologische systemen.

Reflectie en toekomstige richtingen

In Hoofdstuk 10 sluit ik af met een algemene reflectie op complexiteitsonderzoek in de

gedragswetenschappen en een blik op toekomstige ontwikkelingen. Ondanks het feit dat

complexe systemen vaak gedeelde kenmerken hebben, kunnen ze onderling sterk verschillen.

Deze heterogeniteit vereist voorzichtigheid bij het kiezen van geschikte analysemethoden en

bij het overnemen van concepten uit andere disciplines. Werken met het complexe-systeem-

perspectief in de psychologie is uitdagend, mede door de vaagheid van kernconcepten en

meetmethoden. Tegelijkertijd biedt dit perspectief unieke kansen, zoals het combineren van

verschillende methoden. Toekomstig werk zou zich kunnen richten op het systematiseren van

beschikbare methoden, het ontwerpen van studies gebaseerd op complexiteitstheorie, en op

meer interdisciplinaire samenwerking.
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