This is a toy stochastic non-gradient system which can have multistability in some conditions. Model specification:
Arguments
- initial, parameter
Two sets of parameters.
initial
contains the initial value ofx1
,x2
, anda
;parameter
containsb,k,S,n,lambda
, which control the model dynamics, andsigmasq1,sigmasq2,sigmasq3
, which are the squares of \(\sigma_1,\sigma_2,\sigma_3\) and controls the amplitude of noise.- constrain_a
Should the value of
a
be constrained? (TRUE
by default).- amin, amax
If
constrain_a
, the minimum and maximum values of a.- length
The length of simulation.
- stepsize
The step size used in the Euler method.
- seed
The initial seed that will be passed to
set.seed()
function.- progress
Show progress bar of the simulation?
Details
$$\frac {dx_ {1}}{dt} = \frac {ax_ {1}^ {n}}{S^ {n}+x_ {1}^ {n}} + \frac {bS^ {n}}{S^ {n}+x_ {2}^ {n}} - kx_ {1}+ \sigma_1 dW_1/dt$$ $$\frac {dx_ {2}}{dt} = \frac {ax_ {2}^ {n}}{S^ {n}+x_ {2}^ {n}} + \frac {bS^ {n}}{S^ {n}+x_ {1}^ {n}} - kx_ {2}+ \sigma_2 dW_2/dt$$ $$\frac {da}{dt} = -\lambda a+ \sigma_3 dW_3/dt$$
References
Wang, J., Zhang, K., Xu, L., & Wang, E. (2011). Quantifying the Waddington landscape and biological paths for development and differentiation. Proceedings of the National Academy of Sciences, 108(20), 8257-8262. doi:10.1073/pnas.1017017108