Skip to contents

All functions

block_cv()
Use Block Cross-Validation to Evaluate Models
compare_4_emo()
Compare estimated model with true model for 4-emotion model
find_index()
Find index of data that satisfies certain conditions
get_adj_mat()
Extract the adjacency matrix from a quadVAR object.
linear_quadVAR_network() plot(<linear_quadVAR_network>)
Linearize a quadVAR object to produce a network.
partial_plot()
Make a partial plot of a variable in a model This function takes a quadVAR model as input, and returns a plot of the partial effect of a variable on the dependent variable (controlling all other variables and the intercept), for higher and lower levels of the moderator variable split by the median.
predict(<quadVAR>)
Predict the values of the dependent variables using the quadVAR model
quadVAR() print(<quadVAR>) summary(<quadVAR>) coef(<quadVAR>) print(<coef_quadVAR>) plot(<quadVAR>)
Estimate lag-1 quadratic vector autoregression models
quadVAR_to_dyn_eqns()
Transform a quadVAR object to a list of dynamic equations.
sim_4_emo()
Simulate a 4-emotion model
true_model_4_emo() coef(<true_model_4_emo>) print(<true_model_4_emo>)
True model for 4-emotion model
tune.fit()
Using the glmnet and ncvreg packages, fits a Generalized Linear Model or Cox Proportional Hazards Model using various methods for choosing the regularization parameter \(\lambda\)