Package index
-
block_cv()
- Use Block Cross-Validation to Evaluate Models
-
compare_4_emo()
- Compare estimated model with true model for 4-emotion model
-
find_index()
- Find index of data that satisfies certain conditions
-
get_adj_mat()
- Extract the adjacency matrix from a quadVAR object.
-
linear_quadVAR_network()
plot(<linear_quadVAR_network>)
- Linearize a quadVAR object to produce a network.
-
partial_plot()
- Make a partial plot of a variable in a model This function takes a quadVAR model as input, and returns a plot of the partial effect of a variable on the dependent variable (controlling all other variables and the intercept), for higher and lower levels of the moderator variable split by the median.
-
predict(<quadVAR>)
- Predict the values of the dependent variables using the quadVAR model
-
quadVAR()
print(<quadVAR>)
summary(<quadVAR>)
coef(<quadVAR>)
print(<coef_quadVAR>)
plot(<quadVAR>)
- Estimate lag-1 quadratic vector autoregression models
-
quadVAR_to_dyn_eqns()
- Transform a quadVAR object to a list of dynamic equations.
-
sim_4_emo()
- Simulate a 4-emotion model
-
true_model_4_emo()
coef(<true_model_4_emo>)
print(<true_model_4_emo>)
- True model for 4-emotion model
-
tune.fit()
- Using the glmnet and ncvreg packages, fits a Generalized Linear Model or Cox Proportional Hazards Model using various methods for choosing the regularization parameter \(\lambda\)